首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CORDIC算法详解(五)-统一的 CORDIC 算法形式

    网上有很多类似的介绍,但是本文会结合实例进行介绍,尽量以最简单的语言进行解析。   CORDIC ( Coordinate Rotation Digital Computer ) 是坐标旋转数字计算机算法的简称,由 Vloder• 于 1959 年在设计美国航空导航控制系统的过程中首先提出[1], 主要用于解决导航系统中三角函数、 反三角函数和开方等运算的实时计算问题。 1971 年, Walther 将圆周系统、 线性系统和双曲系统统一到一个 CORDIC 迭代方程里 , 从而提出了一种统一的CORDIC 算法形式[2]。   CORDIC 算法应用广泛, 如离散傅里叶变换 、 离散余弦变换、 离散 Hartley 变换、Chirp-Z 变换、 各种滤波以及矩阵的奇异值分解中都可应用 CORDIC 算法。 从广义上讲,CORDIC 算法提供了一种数学计算的逼近方法。 由于它最终可分解为一系列的加减和移位操作, 故非常适合硬件实现。 例如, 在工程领域可采用 CORDIC 算法实现直接数字频率合成器。 本节在阐述 CORDIC 算法三种旋转模式的基础上, 介绍了利用 CORDIC 算法计算三角函数、 反三角函数和复数求模等相关理论。 以此为依据, 阐述了基于 FPGA 的 CORDIC 算法的设计与实现及其工程应用。

    02

    第 3 章 简单函数

    <一>数学函数 在数学中我们用过sin和ln这样的函数,例如sin(π/2)=1,ln1=0等等,在C语言中也可以使用这些函数(ln函数在C标准库中叫做log): 它有六种基本函数(初等基本表示):三角函数数值表(斜边为r,对边为y,邻边为x。)   在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有    正弦函数 sinθ=y/r 正弦(sin):角α的对边 比 斜边    余弦函数 cosθ=x/r 余弦(cos):角α的邻边 比 斜边    正切函数 tanθ=y/x 正切(tan):角α的对边 比 邻边    余切函数 cotθ=x/y 余切(cot):角α的邻边 比 对边    正割函数 secθ=r/x 正割(sec):角α的斜边 比 邻边    余割函数 cscθ=r/y 余割(csc):角α的斜边 比 对边 Sin(π/2)=y/r=1,因为y=1;r=1;

    02

    【性能测评】DSP库,MDK5的AC5,AC6,IAR和Embedded Studio的三角函数性能

    测试条件: 1、IAR8.30开最高等级速度优化。 2、MDK5.27正式版使用AC5开最高等级优化3,开启时间优化,测试C标准库和微库MicroLib两种。 3、MDK5.27正式版使用AC6开最高等级的速度优化,测试C标准库和微库MicroLib两种。 4、Embedded Studio4.30版使用GCC开最高等级优化,开C库使用Fast模式。 5、Embedded Studio4.30版使用CLANG开最高等级优化,开C库使用Fast模式。 6、DSP库使用最新的CMSIS软件包里面的V5.6.0。 7、测试单位使用DWT时钟周期计数器。 8、DSP库使用函数arm_sin_f32测试,IAR,MDK和ES都使用各自带的C库测试。执行10次,求平均。 注意,IAR,MDK和ES都有各自的C库实现方案。 提供一个STM32H7的例程供大家测评:

    02

    CORDIC算法详解(一)-CORDIC 算法之圆周系统之旋转模式

    网上有很多类似的介绍,但是本文会结合实例进行介绍,尽量以最简单的语言进行解析。   CORDIC ( Coordinate Rotation Digital Computer ) 是坐标旋转数字计算机算法的简称, 由 Vloder• 于 1959 年在设计美国航空导航控制系统的过程中首先提出[1], 主要用于解决导航系统中三角函数、 反三角函数和开方等运算的实时计算问题。 1971 年, Walther 将圆周系统、 线性系统和双曲系统统一到一个 CORDIC 迭代方程里 , 从而提出了一种统一的CORDIC 算法形式[2]。   CORDIC 算法应用广泛, 如离散傅里叶变换 、 离散余弦变换、 离散 Hartley 变换、Chirp-Z 变换、 各种滤波以及矩阵的奇异值分解中都可应用 CORDIC 算法。 从广义上讲,CORDIC 算法提供了一种数学计算的逼近方法。 由于它最终可分解为一系列的加减和移位操作, 故非常适合硬件实现。 例如, 在工程领域可采用 CORDIC 算法实现直接数字频率合成器。 本节在阐述 CORDIC 算法三种旋转模式的基础上, 介绍了利用 CORDIC 算法计算三角函数、 反三角函数和复数求模等相关理论。 以此为依据, 阐述了基于 FPGA 的 CORDIC 算法的设计与实现及其工程应用。

    04
    领券