本书编写了300多个实用而有效的数值算法C语言程序。其内容包括:线性方程组的求解,逆矩阵和行列式计算,多项式和有理函数的内插与外推,函数的积分和估值,特殊函数的数值计算,随机数的产生,非线性方程求解,傅里叶变换和FFT,谱分析和小波变换,统计描述和数据建模,常微分方程和偏微分方程求解,线性预测和线性预测编码,数字滤波,格雷码和算术码等。全书内容丰富,层次分明,是一本不可多得的有关数值计算的C语言程序大全。本书每章中都论述了有关专题的数学分析、算法的讨论与比较,以及算法实施的技巧,并给出了标准C语言实用程序。这些程序可在不同计算机的C语言编程环境下运行。
当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。反馈理论的要素包括三个部分:测量、比较和执行。测量关键的是被控变量的实际值,与期望值相比较,用这个偏差来纠正系统的响应,执行调节控制。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
许多初学者觉得深度学习框架抽象,虽然调用了几个函数/方法,计算了几个数学难题,但始终不能理解这些框架的全貌。 为了更好地认识深度学习框架,也为了给一些想要自己亲手搭建深度学习框架的朋友提供一些基础性的指导,日前来自苏黎世联邦理工学院计算机科学系的硕士研究生Gokula Krishnan Santhanam在博客上撰文,概括了大部分深度学习框架都会包含的五大核心组件,为我们详细剖析了深度学习框架一般性的内部组织结构。以下由AI科技评论编译。 Gokula Krishnan Santhanam认为,大部分深度学
MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB和MathemaTIca、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。
最近在学习PID算法,在了解了算法的套路以后,就要进行实验。如何用C语言实现呢?在网络搜索发现了一篇很好的博客,不过里面的数据又臭又长。在这里转载过来,重下新整理了一下。(原文链接)整理中发现,原文参考的博文已无法访问
高对差分格式的认识和离散化分析问题的技巧,加深对理论课程的学习和理解,为数学专业和信息与计算科学专业其他后继课程的学习打好基础。
我身边有些朋友说现在在学校学习什么拉氏变换,Z变换,傅立叶变换没有用,传递函数没有用,差分方程没有用,只是纸上谈兵,我这里先就传递函数和拉氏变换和差分方程介绍几点不自量力的看法,我们学习拉氏变换主要是为了从脱离时域,因为时域分析有它的难度指数,我们从时域映射到S域,目的只有一个,那就是简化计算,正如我们在时域要计算卷积过来,卷积过去,我们把它映射到S域过后,就是乘积过来积乘过去,相对来说,乘积要比卷积的积分要温柔的多,然后我们在S域里面得到结论过后,再将其反映射回到时域,然后自然地在时域使用其所得的结论了。
**张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进行的。**几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。
PID算法是一种具有预见性的控制算法,其核心思想是: 1>. PID算法不但考虑控制对象的当前状态值(现在状态),而且还考虑控制对象过去一段时间的状态值(历史状态)和最近一段时间的状态值变化(预期),由这3方面共同决定当前的输出控制信号; 2>.PID控制算法的运算结果是一个数,利用这个数来控制被控对象在多种工作状态(比如加热器的多种功率,阀门的多种开度等)工作,一般输出形式为PWM,基本上满足了按需输出控制信号,根据情况随时改变输出的目的。
Georgi Gerganov,今年三月曾开源了llama.cpp项目,GitHub上已破三万星标,要知道Stable Diffusion也不过8.8k。
在自动控制中,PID及其衍生出来的算法是应用最广的算法之一。各个做自动控制的厂家基本都有会实现这一经典算法。我们在做项目的过程中,也时常会遇到类似的需求,所以就想实现这一算法以适用于更多的应用场景。
看一下Julia官网上的Benchmark,Julia综合速度,是R语言的42倍,是Python的15倍,是Java的3倍,是Fortran的1倍,和C语言速度不相上下。
.输入官网提供的安装命令进行安装。安装过程中会自动下载相关依赖项,请保持网络通畅。
就像这样的伪代码
最近两天在考虑一般控制算法的C语言实现问题,发现网络上尚没有一套完整的比较体系的讲解。于是总结了几天,整理一套思路分享给大家。
说实话整定口诀对于初学者来说,其实根本就看不懂,只有从实际整定过程中才能慢慢发觉其中的奥秘。
PID,即比例Proportion、积分Integral和微分Derivative三个单词的缩写。
导读:近几年,随着深度学习的爆炸式发展,相关理论和基础架构得到了很大突破,它们奠定了深度学习繁荣发展的基础。这其中涌现了几个著名的深度学习平台,本文将对这些平台进行简要介绍。
最近看到一篇文章讲IMAGE DECOMPOSITION,里面提到了将图像分为Texture layer和Structure layer,测试了很多方法,对于那些具有非常强烈纹理的图像,总觉得用TV去燥的方法分离的结果都比其他的方法都要好(比如导向、双边),比如下图:
数据结构是一门研究非数值计算的程序设计学科,曾获图灵奖的Pascal之父Nicklaus Wirth提出过一个有名的公式:
在matlab中符号变量间也可进行算术运算,常用算术符号:+、-、*、.*、\、.\、/、./、^、.^、 '、 .',假设用符号变量A和B,其中A,B可以是单个符号变量也可以是有符号变量组成的符号矩阵。当A,B是矩阵时,运算规则按矩阵运算规则进行。
关于ADRC的优点本人不会赘述,毕竟作为一个ADRC算法都推导不出来的应用工程师,最希望看到的就是有手就行的操作方法。ARC的缺点就显而易见,就是参数多,一环ADRC大概就有11个参数,但一个粗略的效果很快就出来。本文所有的言论仅以我最近的一次速度闭环控制经验之谈,并没有经过大量的实验验证其绝对正确性,慎用(注:文中公式来自于csdn用户:遥远的乌托邦,有稍作修改)。 ADRC说白了就是PID的升级版,保留了PID的优点,改良了PID的缺点,其结构和PID一样,ADRC可以被看作三个作用效果的结合,分别是TD(跟踪微分器)、ESO(扩张状态观测器)、NLSEF(非线性控制律)。TD是为了防止目标值突变而安排的过渡过程;ADRC的灵魂就在于ESO,其作用下文给客官细细道来;NLSEF是为了改良PID直接线性加权(输出=比例+积分+微分)的缺点而引进的非线性控制律,其更符合非线性系统。
大数据文摘授权转载自数据派THU 作者:陈之炎 对于据科学的初学者来说,利用开源的深度学习框架,可以大幅度简化复杂的大规模度学习模型的实现过程。在深度学习框架下构建模型,无需花费几天或几周的时间从头开始编写代码,便可以轻松实现诸如卷积神经网络这样复杂的模型。在本文中,将介绍几种非常有用的深度学习框架、它们的优点以及应用,通过对每个框架进行比较,研发人员了解如何有选择地使用它们,高效快捷完成项目任务。 深度学习框架概述 深度学习框架是一种界面、库或工具,它使编程人员在无需深入了解底层算法的细节的情况下,能够更
函数递归是指一个函数直接或间接地调用自身,以解决问题的一种方法。在C语言中,函数递归可以用来计算阶乘、斐波那契数列等数学问题。 函数递归是一种编程技术,其中函数直接或间接地调用自身来解决问题。它常用于处理可以分解为更小同类问题的复杂问题,如排序、搜索树等。递归的基本思想是将问题分解为更简单的子问题,然后组合子问题的解来得到原问题的解。然而,递归需要小心处理终止条件,否则可能导致无限循环。此外,递归可能消耗大量内存,因为它需要存储每个递归调用的状态。因此,在使用递归时,应仔细考虑其效率和适用性。
上述就是⼀个简单的递归程序,只不过上⾯的递归只是为了演示递归的基本形式,不是为了解决问题,代码最终也会陷⼊死递归,导致栈溢出。
所谓计算图,就是一种语言,这个语言是用来描述一个函数,我们知道neuralnetwork就是一个函数,所以我们需要描述函数的语言。其实graph有很多种定义方法,但是我们通常使用node来表示一个变量,他可以是一个scalar(标量),vector(向量)甚至是tensor(张量),这里的每一个edge代表了一个operation。
2022年9月22日,中国AI药物研发大会 (CAPR) 在上海召开。中山大学药物分子设计研究中心徐峻主任以《人工智能辅助药物发现——从颠覆性思维到底层逻辑的重构》为题演讲,从底层逻辑的角度解读了AI在制药行业的价值、挑战和未来的机会。
计算机编程语言是程序设计的最重要的工具,它是指计算机能够接受和处理的、具有一定语法规则的语言。
当前,PyTorch、TensorFlow 等机器学习框架已经成为了人们开发的重要工具。计算反向传播、贝叶斯推理、不确定性量化和概率编程等算法的梯度时,我们需要把所有的代码以微分型写入框架内。这对于将机器学习引入新领域带来了问题:在物理模拟、游戏引擎、气候模型中,原领域组件不是由机器学习框架的特定领域语言(DSL)编写的。因此在将机器学习引入科学计算时,重写需求成为了一个挑战。
Numpy库是Python数值计算的基石。它提供了多种数据结构、算法以及大部分涉及Python数值计算所需的接口。主要包括以下内容:
Node Version Manager,是一个 POSIX 兼容的 bash 脚本,用于管理多个活动 node.js 版本。nvm 可以让你通过命令行快速安装和使用不同版本的 Node。它可以在任何符合 POSIX 标准的 shell(sh、dash、ksh、zsh 和 bash)上工作,在 Unix、macOS 等平台上都能运行。
.通过上回(【C语言】函数的系统化精讲(二))我们了解到递归的限制条件,递归在书写的时候,有2个必要条件: 递归在书写时有两个必要条件: • 递归必须有一个限制条件,当满足该条件时,递归停止。 • 每次递归调用后,逼近该限制条件。 下面我们来进行递归举例,更加深刻了解一下吧!
在世界的某个角落里,有四个年轻人。他们正在合租房中,默默无语的埋头摆弄着手里的Matlab。屋里的气氛有些安静,有些单调,有些无聊。
鉴于机器学习(ML)对编程语言、编译器和生态系统的众多需求,现在已经有很多有趣的发展。不仅 TensorFlow 和 PyTorch 等现有系统间的权衡得不到解决,而且这两个框架都包含不同的「静态图」和「eager execution」接口,但它们的形式已经比以前更加清晰。与此同时,机器学习模型基本上是可微分算法的思想(通常称为可微分编程)已经流行起来。
如果现代Python有一个标志性特性,那么简单说来便是Python对自身定义的越来越模糊。在过去的几年的许多项目都极大拓展了Python,并重建了“Python”本身的意义。 与此同时新技术的涌现侵占了Python的份额,并带来了新的优势: Go – ( Goroutines, Types, Interfaces ) Rust – ( Traits, Speed, Types ) Julia – ( Speed, Types, Multiple Dispatch ) Scala – ( Traits, Sp
---- 新智元报道 编辑:LRS 【新智元导读】常做科学计算的研究人员对Julia肯定不陌生,它从发布至今已经走过了整整十个年头,如今也是终于实现了最初的「全能语言梦」,一起看看Julia背后的故事! 2012年, Julia语言横空出世,从此科学计算领域又多了一个强大的工具。如今,Julia已经走过了十个年头,拥有数十万用户,在数百所大学和公司内开始建立Julia软件技术栈,从个性化药物、气候建模、新材料研发,甚至太空任务规划都有Julia的身影。 最近,Julia的开发者们又发布了一篇博客
本文介绍了几种非常有用的深度学习框架、它们的优点以及应用,通过对每个框架进行比较,研发人员了解如何有选择地使用它们,高效快捷完成项目任务。
本人介绍:双非一本大三混子,有点后悔自己没有在大学一开始就选定自己的方向。侥幸在大学时期获得过校级数模三等奖,校级ACM二等奖,市场调查分析大赛省级二等奖。综合测评班级第一,获得过国家励志奖学金,校级一等奖学金;大一两个学期无脑通关英语四六级,计算机二级。
使用过TensorFlow的大家都会知道, TF通过计算图将计算的定义和执行分隔开, 这是一种声明式(declaretive)的编程模型. 确实, 这种静态图的执行模式优点很多,但是在debug时确实非常不方便(类似于对编译好的C语言程序调用,此时是我们无法对其进行内部的调试), 因此有了Eager Execution, 这在TensorFlow v1.5首次引入. 引入的Eager Execution模式后, TensorFlow就拥有了类似于Pytorch一样动态图模型能力, 我们可以不必再等到see.run(*)才能看到执行结果, 可以方便在IDE随时调试代码,查看OPs执行结果. tf.keras封装的太好了 。不利于适用于自定义的循环与训练,添加自定义的循环 是一个命令式的编程环境,它使得我们可以立即评估操作产生的结果,而无需构建计算图。
控制目的: 控制的根本目的就是要使控制对象当前的状态值与用户的设定值相同(最大限度的接近)。
机器学习的传统是将基于规则的推断和统计学习对立起来,很明显,神经网络站在统计学习那一边。神经网络在统计模式识别中效果显著,目前在计算机视觉、语音识别、自然语言处理等领域中的大量问题上取得了当前最优性能。但是,神经网络在符号计算方面取得的成果并不多:目前,如何结合符号推理和连续表征成为机器学习面临的挑战之一。
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
大家好,我是猫哥。我对于编程语言跟其它学科的融合非常感兴趣,这种兴趣在创办公众号时就已非常浓烈,因此,几个月来,就做了不少大胆的尝试。不敢说取得了什么“成果”吧,但至少是做到了独树一帜。
整理 | Carol 出品 | CSDN(ID:CSDNnews) 很多人认为 ,C 语言是一门“古董”语言。也有不少人认为,它没有 Python 简洁,没有 Java 安全,甚至有可能要退出历史舞台。而事实上,时至今日,C 语言凭借其在不同编译环境的稳定性、可移植性、快速的运行速度,仍在多个领域发挥着重要作用。 首先,Unix 就是用 C 语言编写的。虽然最初 Unix 采用的是汇编语言,但是 Unix 早在 1973 年就用 C 语言进行重写,这使得 Unix 在不同的机器上更具可移植性,并有助于其变
Mathematica 12 为偏微分方程(PDE)的符号和数值求解提供了强大的功能。本文将重点介绍版本12中全新推出的基于有限元方法(FEM)的非线性PDE求解器。首先简要回顾用于求解 PDE 的 Wolfram 语言基本语法,包括如何指定狄利克雷和诺伊曼边界条件;随后我们将通过一个具体的非线性问题,说明 Mathematica 12的 FEM 求解过程。最后,我们将展示一些物理和化学实例,如Gray-Scott模型和与时间相关的纳维-斯托克斯方程。更多信息可以在 Wolfram 语言教程"有限元编程"中找到,本文大部分内容都以此为基础(教程链接见文末)。
白盒测试又称结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。
【【注】参考自邱锡鹏的《神经网络与深度学习》。 自动计算梯度的方法主要分为三类:数值微分、符号微分和自动微分。
在刚刚过去的 2021 年,Julia 编程语言社区依然保持了高速发展。据统计,目前 Julia 的全球总用户量已超过一百万,有一万多家公司和一千五百多所高校下载和使用了 Julia。此外,一些世界名校,如北京大学,MIT、Stanford 和 Berkeley 等,已经在教学中使用 Julia 语言。
领取专属 10元无门槛券
手把手带您无忧上云