实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略; B-树 是一种多路搜索树(并不是二叉的...M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并; B+树 B+树是B-树的变体,也是一种多路搜索树: 1.其定义基本与B-树同,除了: 2.非叶子结点的子树指针与关键字个数相同...B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在 非叶子结点命中),其性能也等价于在关键字全集做一次二分查找; B+的特性: 1.所有关键字都出现在叶子结点的链表中...树 是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针; ? ...树分配新结点的概率比B+树要低,空间使用率更高; 小结 B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点; B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点
avl树和m为300的B-树? avl树的高度:log2n = 24层 最差的情况一个节点只存储一个索引?...最差需要24次磁盘IO B-树高度:log(300)n = 3 层 最多花费3次磁盘IO B+树 B+树是B-树的一种变形 非叶子结点只存储索引,不存储数据 B+树的叶子结点包含全部的关键字信息...,而B-树的数据分散在各个结点当中。...B+树存放的索引项相对于B-树能够存储的更多。 B*树 B*树是B+树的变体,在B+树的非根和叶子结点在增加指向兄弟结点的指针 B*提高了结点的利用率。
(2). 2-3-4树: 和2-3树的区别就是,它还允许节点有三个元素且有四个子节点。 4. B树: B是balance,平衡的意思,所以,B树首先是一棵平衡树,而平衡树首先得是一棵排序数。...所以B树就是一棵平衡的、排序的多叉树。B的相关说明如下: B树的阶:节点的最多子节点个数叫做阶。...比如2-3树的阶就是3,2-3-4树的阶就是4; B树的搜索:从根节点开始,对节点内的元素进行二分查找,如果找到就结束,否则进入查找元素所属范围的子节点再进行二分查找,直到找到或者到达叶子节点; B树的所有节点都会存放数据...B+树: B+树是B树的变体,和B树的区别就是,B+树所有数据都存放在叶子节点。...B+树一般用于文件系统; 6. B*树: B*树又是B+树的变体,就是在B+树的基础上,在非根非叶子节点之间增加了指向兄弟节点的指针。
要是那个人说b树和b-树不一样 那你可以认为他是zz了hh,b树就是b-树 说起来b树的发明主要是为了减少磁盘io操作 将树的结构设计成矮胖型而不是瘦高型,因为数据库索引是存储在磁盘上的,当数据量比较大时...,我们不能把所有索引加载到内存中,只能逐一加载每一个磁盘页,这里的磁盘页对应索引树的节点 一个m阶的B树具有如下几个特征: 1.根结点至少有两个子女。...一个m阶的B+树具有如下几个特征: 1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。...下图是一个b+树( b-树改造加链表) ?
说明:本文从B树开始谈起,然后论述B+树、B*树,最后谈到R 树。其中B树、B+树及B*树部分由weedge完成,R 树部分由Frankie完成,全文最终由July统稿修订完成。...3.B- 树 3.1什么是B-树 具体讲解之前,有一点,再次强调下:B-树,即为B树。...因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如人们可能会以为B-树是一种树,而B树又是一种一种树。...(t=2的意思是,mmin=2,m可以>=2)时的B树是最简单的(有很多人会因此误认为B树就是二叉查找树,但二叉查找树就是二叉查找树,B树就是B树,B树是一棵含有m(m>=2)个关键字的平衡多路查找树)...7.总结 通过以上介绍,大致将B树,B+树,B*树总结如下: B树:有序数组+平衡多叉树; B+树:有序数组链表+平衡多叉树; B*树:一棵丰满的B+树。
B树、B+树、B*树——简单介绍 强烈推介IDEA2020.2破解激活,IntelliJ...翻译成 B-树,容易让人产生误解,会以为 B-树是一种树。...实际上,B-Tree就是B树。...三、B树、B+树、B*树 ---- 【1】B树介绍:前面介绍的2-3、2-3-4树就是 B树,在 MySql 中经常听说某种索引是基于 B树、B+树的,如下图: ?...【2】B+树介绍:B+ 树是B树的变体,也是一种多路搜索树,如下图: ? 【3】B* 树介绍:B* 树是B+树的变体,在B+树的非根和非叶子节点增加了指向兄弟的指针,如下图: ?
一、B树 1.B树的定义 1. 在内存中搜索效率高的数据结构有AVL树,红黑树,哈希表等,但这是在内存中,如果在外部存储设备中呢?...(1)在插入节点时,B+树的第一步就与B树不同了,因为B树的所有结点都可以存储关键字和value值,所以当B树为空进行插入时,只需要创建一个根节点,然后将第一个值插入进去即可,但B+树是将索引和关键字分开了...(3)B+树的分裂虽然比B树实现起来要简单,但B+树的插入要比B树多考虑一种情况,由于B+树非叶子节点存储的是索引,所以有一种特殊的情况就是当在最左边最下面的叶子节点插入一个小于当前叶子结点中所有关键字的...在实际使用中,B树和B+树的使用率是最高的,而B *树用的是最少的,B *树和B+树相比只是空间利用率更高了,但在磁盘中空间是管够的啊,所以B *树实际中并不那么实用,因为磁盘根本不缺空间。...B树可以看作是有序数组+平衡搜索树,而B+树可以看做成有序数组+平衡搜索树+单链表,B*树可以看作一棵节点存储的更加丰满,空间利用率更高的B+树。 三、B树与B+树的应用 1.
B树和B+树都是用于外查找的数据结构,都是平衡多路查找树。 两者的区别 在B+树中,具有n个关键字的结点含有n棵子树,即每个关键字对应一颗子树;而在B树中,具有n个关键字的结点含有(n+1)棵子树。...在B+树中,除根节点外,每个结点中的关键字个数n的取值范围是[m/2]~m,根节点n的取值范围是2~m;而在B树中,除根节点外,其他所有非叶结点的关键字个数n的取值范围是[m/2]-1~m-1,根节点n...B+树中的所有叶结点包含了全部关键字,即其他非叶结点中的关键字包含在叶结点中;而在B树中,关键字是不重复的。...B+树中的所有非叶结点仅起到索引的作用,即结点中的每个索引项只含有对应子树的最大关键字和指向该子树的指针,不包含该关键字对应记录的存储地址;而在B树中,每个关键字对应一个记录的存储地址。...通常在B+树上有两个头指针,一个指向根节点,另一个指向关键字最小的叶结点,所有叶结点链接成一个不定长的线性链表,所以B+树可以进行随机查找和顺序查找;而B树只能进行随机查找。
B/B+树 B 树即:多路平衡查找树; B 树的巧妙之处在于: 将一个节点的大小设置为一页的大小; 一个节点可以存放多个关键字(多叉树); 自平衡; 这 3 点结合起来就可以做到: 一个节点大小为一页,...B/B+树的索引数量 B 树的节点中存储:指针、关键字(主键)、数据 B+ 树的非叶子节点:指针、关键字 B+树的叶子节点:指针(链表)、关键字、数据 注意,这里不是绝对的,比如有的 B+ 树中叶子节点存储的不是数据...而且上述是假设数据为 1KB,如果数据没那么大,高度为 3 的 B 树能存储更多的数据,但是如果用在大型数据库索引上还是不够。 B+ 树: B+树 如上图,B+树的核心在于非叶子节点不存储数据。...B/B+树的优点 更适合磁盘存储,减少了树的层级,进而减少 I/O 次数; B 树和 B+ 树对比 都是 B 树,但是 B+树更适合范围查询,比如 Mysql,且查询次数很稳定,为 logn。...而 B 树更适合键值对型的聚合数据库,比如 MongoDB,查询次数最优为 O(1); 红黑树更适合内存存储,B 树更适合键值对存储,B+ 树适合范围查询;
什么是B树 B树,即B-tree树,B是Balanced首字母,平衡的意思 因为B树的原英文名称为B-tree 很多人喜欢把B-tree译作B-树,然后读作B减树 其实,这么是不对的 容易让人会以为B...树和B-树是两种树 特此声明:B-树就是指的B树 好了,本章结束 ?...什么是B+树 B+树是B-树的变体,也是一种多路搜索树 4.1 B+树的特点 其定义基本和特性与B-树同,除了: 1.非叶子结点的子树指针与关键字个数相同 2.非叶子结点的子树指针P[i],指向关键字值属于...什么是B*树 是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针 B*树定义了非叶子结点元素个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2) B*的查询、插入和删除操作和...,且只出现一次,非叶子结点可以命中; B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中; B*树:在B+树基础上,为非叶子结点也增加链表指针
在计算机科学中,B树、B+树和B*树是常用的数据结构,它们在数据库索引、文件系统等领域发挥着重要作用。本文将深入探讨这三种树形结构的原理、特性以及应用场景。 1....B树的基础概念 1.1 B树的定义 B树是一种平衡的搜索树,通常被广泛应用于数据库和文件系统中。其定义包括以下关键特点: 多路性: 每个节点可以拥有多个子节点。...以上是B树基础概念的一个简要介绍,接下来将深入探讨B+树和B*树的特性和应用。 2. B+树的特性和应用 2.1 B+树的定义 B+树是在B树的基础上进行改进的一种数据结构。...B*树的优化和应用 3.1 B*树的定义 B*树是在B+树的基础上进行了一些优化的数据结构。其目标是减少B+树节点的分裂和合并操作,以提高性能和降低维护成本。...3.2 B*树的特性 3.2.1 非叶子节点的关键字个数更多 相对于B+树,B*树的非叶子节点可以包含更多的关键字。这一特性减少了树的高度,提高了查找效率。
具体区别1、叶子节点B树不存指针,B+树存双向指针,方便范围查找2、B树非叶子节点也存储数据,B+树不存储数据3、B树不会有冗余索引,是唯一的,B+树会有冗余索引4、存放同样的数据,B树的层级比B+树要高...,因为B+树有冗余索引,所以相同层级的叶子节点的数据就会更多,(可以有更多的分叉)索引:如果存在主键,主键索引就是聚集索引如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
# B + 树 # 什么是 B + 树 B + 树是在二叉查找树的基础上进行了改造:树中的节点并不存储数据本身,而是只是作为索引。每个叶子节点串在一条链表上,链表中的数据是从小到大有序的。...那如何降低树的高度呢? 我们来看下,如果我们把索引构建成 m 叉树,高度是不是比二叉树要小呢?...# 为什么需要 B + 树 关系型数据库中常用 B+ 树作为索引,这是为什么呢? 思考以下经典应用场景 根据某个值查找数据,比如 select * from user where id=1234 。...实际上,数据库索引所用到的数据结构跟跳表非常相似,叫作 B+ 树。不过,它是通过二叉查找树演化过来的,而非跳表。...B + 树的应用场景 # 参考资料 数据结构与算法之美 数据结构 树 二叉树 B+ 树
B树是为磁盘或其他存取的辅助存储设备而设计的一种平衡搜索树。B树类似于红黑树,但是在降低磁盘I/O方面表现很好。 B树和红黑树不同之处在于B树的节点可以有很多孩子,从数个到数千个。...B树的严格高度可能比一棵红黑树的高度要小很多,因此可以使用B数在O(lgn)内完成一些动态集合的操作。 如果B树的一个内部节点x包含x.n个关键字,那么节点x就要x.n+1个孩子。...对存储在磁盘上的一棵B树,通常分支因子在50-2000不等,具体取决于一个关键字相对于一页的大小,大的分支因子可以降低树的高度以及查找任何一个关键字所需的磁盘的存取次数。...B树的定义 一棵B树T是具有以下性质的有根树(树根表示为T.root) 1.每个节点x具有下面的性质: (1)x.n,当前存储在节点x中的关键字的个数; (2)x.n个关键字本身...B树的高度 B树上大部分操作所需的磁盘存取次数与B树的高度成正比。 查找元素的例子 ?
B+树的叶节点是链接的,所以对树中的所有对象进行全扫描只需要一次线性遍历所有叶节点。另一方面,B树需要遍历树中的每一层。这种全树遍历可能会涉及比B+叶的线性遍历更多的高速缓存未命中。...B+树的叶子节点由一条链相连,而B树的叶子节点各自独立。 使用B+树的好处 由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。...数据库为什么使用B+树而不是B树 B树相比二叉树虽好,但还是存在以下问题: 1.每个节点中既要存索引信息,又要存其对应的数据,如果数据很大,那么当树的体量很大时,每次读到内存中的树的信息就会不太够...2.B树遍历整个树的过程和二叉树本质上是一样的,B树相对二叉树虽然提高了磁盘IO性能,但并没有解决遍历元素效率低下的问题。 ...针对以上两个问题,B+树诞生了,B+树相比B树,本质上是一样的,区别就在与B+树的所有根节点都不带有任何数据信息,只有索引信息,所有数据信息全部存储在叶子节点里,这样,整个树的每个节点所占的内存空间就变小了
B树的产生是为了: 解决因为大量数据时,红黑树/二叉查找树的深度太深,如数据库的索引数据存放在磁盘上,而如果使用红黑树的话,深度太深,每一个查找一个节点都需要寻道+磁盘读写
B树、B+树的区别及MySQL为何选择B+树 1. B树和B+树的定义 B树和B+树都是一种多路搜索树,常用于数据库和文件系统中进行索引操作。在介绍B树和B+树的区别之前,先来了解一下它们的定义。...B树 B树是一种平衡查找树,其每个节点最多包含k个孩子,k称为B树的阶。除根节点和叶子节点外,其它每个节点至少有ceil(k/2)个孩子,即一个节点可以拥有的关键字数在ceil(k/2)和k之间。...B+树 B+树也是一种多路搜索树,与B树相似,但在B+树中,所有的数据都存储在叶子节点中,而非在非叶子节点中。B+树满足以下条件: 所有关键字都出现在叶子节点的链表中,且链表中的关键字恰好是有序的。...B树和B+树的区别 B树和B+树虽然都是多路搜索树,但它们的区别还是比较明显的。 存储结构 B树的非叶子节点中既包含索引,也包含数据,而B+树的非叶子节点中只包含索引,数据都存储在叶子节点中。...查询性能 B+树的查询性能更优,因为B+树的数据都存储在叶子节点中,而B树的数据既可能存储在非叶子节点中,也可能存储在叶子节点中。
聚集索引的缺点就是修改起来比较版,因为它需要保持表中记录和索引的顺序需要一致,在插入新记录的时候就会对数据也重新做一次排序 非聚集索引定义了表中记录的一些逻辑顺序,但记录的物理和索引不一定保持一致,两种索引都采用B+...树的结构,非聚集索引的叶子层并不喝世纪数据叶相互重叠,而是采用叶子层包含一个指向表中的记录指针 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/168865.html
引言 时隔一年,我又想起当初看数据库时,看到的B+树,就是数据库的索引使用的数据结构。再整理一下,看看自己没有忘记很多吧。 概述 B+树之前,先来看一下二叉查找树(1,2,3,4,5,6,7) ?...但想想数据库查找数据的场景: select * from user where id > 10, 显然,对于这种查找区间来说,二叉查找树并不高效。那么B+树是如何解决这个问题的呢?...没错,这就是B+树。 这个结构是怎么想出来的我不知道啊,但是我今天突然发现,他的存储方式和跳表十分之像啊。莫非是受到了跳表的启发?亦或是跳表受到了B+树的启发?咱也不知道。...引申 很好,B+树整明白了,新的问题出现了。如果数据库使用这种数据结构存储,全部放到内存中肯定是不现实的,势必要将其存储到硬盘中,待查找时再到文件中读取。...B+树是不是分叉越多越好 那肯定不是越多越好啊,要是一层就把所有数据都存储了,要他还有什么用,根本没有起到快速定位的作用。 但我想说的并不是这。
领取专属 10元无门槛券
手把手带您无忧上云