“ 最近为小程序增加语音识别转文字的功能,坑路不断,特此记录。 ” 微信开发者工具 开发者工具上的录音文件与移动端格式不同,暂时只可在工具上进行播放调试,无法直接播放或者在客户端上播放。 debug的时候发现,工具上录音的路径是http://tmp/xxx.mp3,客户端上录音是wxfile://xxx.mp3。 其实呢,不是格式不同,是映射路径不同。 虽然这里做个兼容也不难,但是每次提示一行文字,很影响美观。 采样率与编码码率限制 每种采样率有对应的编码码率范围有效值,设置不合法的采样率或编码码率会导
A1:但是你传过来的音频,必须是双通道的。是你音频文件生成好的。是一个实时音频流的概念。
今天来介绍一个VAD的工具,VAD(Voice Activity Detection)语音活动检测,是可以把一段长语音以静音位置把语音分割成多段短语音,常见的就用WebRTC VAD工具,目前很多项目都是用这个工具,但是今天作者介绍的是另一个工具,这个工具是PPASR的一个小功能,这个功能是基于深度学习实现的。
参考: 语音识别系列︱用python进行音频解析(一) 语音识别系列︱paddlehub的开源语音识别模型测试(二)
对于语音识别初学者来说,通过简单案例快速上手,不仅能够快速了解语音识别等实际应用模式,对枯燥无味的学习中提升兴趣值也大有帮助。百度语音提供了语音识别、语音合成和语音唤醒等产品的SDK免费资源,是面向广大开发者永久免费的开放语音技术平台,且简单易用,可以作为学习之余练手的好去处。
采用领先国际的流式端到端语音语言一体化建模方法,融合百度自然语言处理技术,近场中文普通话识别准确率达98%
腾讯云实时音视频(TRTC)接入实时语音识别,主要是将TRTC中的音频数据传递到语音识别的音频数据源中进行实时识别。本篇讲述如何对TRTC本地和远端的音频流进行实时识别。
2019年9月7日,一知智能受邀参加由AICUG人工智能技术社区主办的AI 先行者大会(AI Pioneer Conference),大会聚焦国际AI前沿技术、产业落地,汇聚中美AI行业领袖与技术大咖,共同探讨人工智能行业的发展与未来。
我们现在就基于百度Ai开放平台进行语音技术的相关操作,demo使用的是C#控制台应用程序。
随着人工智能技术的飞速发展,语音识别(ASR)和语音合成(TTS)技术已经成为智能语音服务领域的核心技术。腾讯云语音产品,凭借其业界领先的技术优势和极具竞争力的价格,为各行业提供了从标准化到定制化的全方位智能语音服务,广泛应用于多个行业场景,极大地推动了企业服务、阅读、教育、游戏、金融、电商等行业的智能化升级。
1,打开您的 Xcode 工程项目,选择要运行的 target , 选中Build Phases项。
由于底层识别使用的是pcm,因此推荐直接上传pcm文件。如果上传其它格式,会在服务器端转码成pcm,调用接口的耗时会增加。
本文档是百度AI开放平台Linux SDK (C++)BDSpeechSDK 3.x 的用户指南。描述了在线语音识别相关接口的使用说明
在日常工作、生活中,语音识别技术作为基础服务,越来越多的出现在我们周围,比如智能音箱、会议记录、字幕生成等等。
第五届Sky Hackathon已于11月29日正式落下帷幕,第一名为来自青岛大学QDU_SMS团队。他们深入优化TensorRT引擎,并且修改Yolo核心代码,最终在置信度和速度上获得了不俗表现,让我们一起看看他们的项目报告书吧!
这一篇开始主要是开源模型的测试,百度paddle有两个模块,paddlehub / paddlespeech都有语音识别模型,这边会拆分两篇来说。 整体感觉,准确度不佳,而且语音识别这块的使用文档写的缺胳膊少腿的; 使用者需要留心各类安装问题。
Python在语音识别方面功能很强大,程序语言简单高效,下面编程实现一下如何实现语音识别。本文分享如何调用百度AI开放平台实现语音识别技术。
数字世界是模拟世界的镜像,而ADC就是连接两个世界的大门。一切模拟信号一旦经过ADC离散化后,其幅值必然会失真,其重要原因是ADC分辨率有限,只能逼近真实幅值。
本文讲解在 GNU Radio 中使用 USRP N320 做无线电收发测试时如何修改 USRP N320 主时钟频率。
这应该是过采样系列的最后一篇文章,经常有同学在使用FPGA、单片机或者DSP进行过采样时没有正确设计代码,导致结果异常,有些结果看似正常,而实际却没有意义。
在尖端语音处理领域,Riva 是一款由 NVIDIA 开发的强大平台,使开发人员能够创建强大的语音应用。该平台提供了一系列复杂的语音处理能力,包括自动语音识别(ASR)、文本转语音(TTS)、自然语言处理(NLP)、神经机器翻译(NMT)和语音合成。Riva 的一个关键优势在于其利用了 NVIDIA 的 GPU 加速技术,确保在处理高负载时仍能保持最佳性能。通过用户友好的 API 接口和 SDK 工具,Riva 简化了开发人员构建语音应用的过程。此外,Riva 还在 NVIDIA NGC™ 存储库中提供了预训练的语音模型,这些模型可以在自定义数据集上使用 NVIDIA NeMo 进行进一步优化,从而将专业模型的开发加速了 10 倍。
◆ 数字音频接口: 1、I2S 接口 I2S(Inter-IC Sound Bus)是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准。在飞利浦公司的I2S 标准中,既规定了硬件接口规范,也规定了数字音频数据的格式。I2S 有3 个主要信号:
前段时间办公室出现一奇葩需求,要把一段授课视频转换为文字,为了实现这个目标我四处搜罗找了几款APP进行了多步操作,总体感觉比较麻烦。想想怎么说我们也是玩Python ,为啥不用Python呢~~说干就干,经过一番分析和搜索,还真被我搞定了,下面跟大家分享一下。
新一代 Kaldi 团队是由 Kaldi 之父、IEEE fellow、小米集团首席语音科学家 Daniel Povey 领衔的团队,专注于开源语音基础引擎研发,从神经网络声学编码器、损失函数、优化器和解码器等各方面重构语音技术链路,旨在提高智能语音任务的准确率和效率。
假如:1个音频的总帧数=170880,采样率sr=48000,持续秒数=3.560000 假设音频数据为y: y = [-0.00856018 -0.00930786 -0.00827026 ..., -0.03897095 -0.03567505 -0.03329468]
(2)腾讯云控制台开通实时语音权限 https://console.cloud.tencent.com/asr
采样就是把模拟信号数字化的过程,不仅仅是音频需要采样,所有的模拟信号都需要通过采样转换为可以用0101来表示的数字信号,示意图如下所示:
语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。 语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别技术车联网也得到了充分的引用,例如在翼卡车联网中,只需按一键通客服人员口述即可设置目的地直接导航,安全、便捷。
语音识别功能提供面向移动终端的语音识别能力。它基于华为智慧引擎(HUAWEI HiAI Engine)中的语音识别引擎,向开发者提供人工智能应用层API。该技术可以将语音文件、实时语音数据流转换为汉字序列,准确率达到90%以上(本地识别95%)。
将 PCM 音频采样编码成 AAC 格式 , 需要使用 FAAC编码器 , 在上一篇博客 【Android RTMP】音频数据采集编码 ( 音频数据采集编码 | AAC 高级音频编码 | FAAC 编码器 | Ubuntu 交叉编译 FAAC 编码器 ) 中完成了对 FAAC 音频编码器的交叉编译 , 交叉编译结果如下 :
事件相关去同步化与同步化(ERD/S)和运动相关皮质电位(MRCP)在下肢康复的脑机接口(BCI)中,特别是在站立和坐姿中,起着重要的作用。然而,人们对站立和坐着的大脑皮层活动的差异知之甚少,尤其是大脑的意图是如何调节运动前的感觉运动节奏的。在本研究中,研究人员旨在研究在站立和坐着的动作观察(AO)、运动想象(MI)和运动执行(ME) 期间连续性EEG节奏的解码。研究人员开发了一项行为任务,在该任务中,参与者被指示对坐立和站坐的动作执行AO和MI/ME。实验结果表明,在AO期间ERD比较显著,而在MI期间ERS在感觉运动区域的alpha带较为典型。结合常用空间模式(FBCSP)和支持向量机(SVM)进行离线和分类器测试分析。离线分析表明,AO和MI的分类在站-坐转换时的平均准确率最高,为82.73±2.54%。通过分类器测试分析,研究人员证明了MI范式比ME范式具有更高的解码神经意图的性能。
选自Awni 机器之心编译 参与:Nurhachu Null、路雪 深度学习应用到语音识别领域之后,词错率有了显著降低。但是语音识别并未达到人类水平,仍然存在多个亟待解决的问题。本文从口音、噪声、多说话人、语境、部署等多个方面介绍了语音识别中尚未解决的问题。 深度学习被应用在语音识别领域之后,词错率有了显著地降低。然而,尽管你已经读到了很多这类的论文,但是我们仍然没有实现人类水平的语音识别。语音识别器有很多失效的模式。认识到这些问题并且采取措施去解决它们则是语音识别能够取得进步的关键。这是把自动语音识别(
语音识别技术即Automatic Speech Recognition(简称ASR),是指将人说话的语音信号转换为可被计算机程序所识别的信息,从而识别说话人的语音指令及文字内容的技术。目前语音识别被广泛的应用于客服质检,导航,智能家居等领域。树莓派自问世以来,受众多计算机发烧友和创客的追捧,曾经一“派”难求。别看其外表“娇小”,内“心”却很强大,视频、音频等功能通通皆有,可谓是“麻雀虽小,五脏俱全”。本文采用百度云语音识别API接口,在树莓派上实现低于60s音频的语音识别,也可以用于合成文本长度小于1024字节的音频。 此外,若能够结合snowboy离线语音唤醒引擎可实现离线语音唤醒,实现语音交互。
从初中物理上我们就学到,声音是一种波。计算机只能处理离散的信号,通过收集足够多的离散的信号,来不断逼近波形,这个过程我们叫做采样。怎么样才能更好的还原声音信息呢?这里很自然引出两个概念了。
原文链接:http://www.chenjianqu.com/show-44.html
主要是 回复 给我发邮件以及QQ上询问的朋友们的一些疑问和需求,这里稍作回复一下。
本项目是基于PaddlePaddle的DeepSpeech 项目开发的,做了较大的修改,方便训练中文自定义数据集,同时也方便测试和使用。DeepSpeech2是基于PaddlePaddle实现的端到端自动语音识别(ASR)引擎,其论文为《Baidu’s Deep Speech 2 paper》 ,本项目同时还支持各种数据增强方法,以适应不同的使用场景。支持在Windows,Linux下训练和预测,支持Nvidia Jetson等开发板推理预测。
在现实生活中,大多数我们所接触到的信号都是一种模拟信号,电压、电流、声音信号等。我们在嵌入式开发过程中,有时候会涉及到模拟信号的采集,在采集过程中,为了更好地还原出信号原本的样子,有这个一个采样定理,被称之为 Nyquist 采样定理,采样定理的内容是这样的:要从采样信号中不失真地恢复原始信号,那么采样频率应该大于原始信号最高频率的两倍,所以在编写程序中,我们为了能够从采样信号中不失真的恢复出原始信号,那么我们必须设置合适的采样率,下面笔者将不同地角度阐述几种确定采样率的方法,也就是确定采样周期。
笔者最近在挑选开源的语音识别模型,首要测试的是百度的paddlepaddle; 测试之前,肯定需要了解一下音频解析的一些基本技术点,于是有此篇先导文章。
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 // 编者按:随着长视频制作行业和消费市场的持续发展,国外越来越多优秀内容“走进来”,同时更多的国内优秀作品“走出去”,这对配音本地化提出了极大的挑战。爱奇艺在自有的海量内容优势下,基于Voice Conversion,MDX,Denoise等AI技术,研发了面向影视剧场景的AI配音技术IQDubbing,有效地缓解了影视剧配音本地化的问题。LiveVideoStackCon 2022
ADC采样率指的是模拟到数字转换器(ADC)对模拟信号进行采样的速率。在数字信号处理系统中,模拟信号首先通过ADC转换为数字形式,以便计算机或其他数字设备能够处理它们。
把模拟信号转变成 数字信号,前者是连续的,后者离散的。因此有DAC和ADC。 需要关注的三个指标,这三个指标决定音频的质量
AudioContext 属于 Web Audio 中的一个 API,创建音频你可以使用
今天我们学习音频的采集、编码、生成文件、转码等操作,我们生成三种格式的文件格式,pcm、wav、aac 三种格式,并且我们用 AudioStack 来播放音频,最后我们播放这个音频。
今天我要和大家分享一个非常酷的 Python 工具,它叫做 Audio Slicer。这个小工具的主要功能是利用沉默检测技术来切割音频文件。在最新的 2.0 版本中,它的速度有了显著的提升(比之前的版本快了 400 倍!),并且切割逻辑也得到了改进,错误率大大降低。如果你对 1.0 版本感兴趣,可以在 GitHub 上找到旧版本的代码库。此外,还有一个带有图形用户界面的版本,让操作更加方便。
香浓采样定理或者说奈奎斯特采样定理告诉我们,要以信号频率2倍以上的采样率对该信号进行采样,否则会出现频率混叠,比如对1Khz信号进行采样的话,采样率要高于2Ksps,
显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。常见的分辨率(ps:图片中的分辨率长宽反过来理解下,没找到好的图,如4k:4096x2160)如下:
本文是基于PineAppRtc项目https://github.com/thfhongfeng/PineAppRtc)
采样越高,声音的还原就越真实越自然,人对频率的识别范围是 20HZ - 20000HZ, 如果每秒钟能对声音做 20000 个采样, 回放时就足可以满足人耳的需求。所以 22050 的采样频率是常用的, 44100已是CD音质, 超过48000的采样对人耳已经没有意义。
设置好唤醒词后, 下载windowsSdk, 项目需要/bin目录下的msc_x64.dll 和 msc.dll (分别是64位和32位的dll, 按需使用), 以及/bin/msc/res/ivw目录下的wakeupresource.jet(语音唤醒资源文件)
领取专属 10元无门槛券
手把手带您无忧上云