本次分享一个交通行业实战项目,这个项目是对出租车GPS数据进行分析,具体内容包括了数据理解、业务场景、数据处理、可视化等。
之前碰到asp.net core异步进行新增操作并且需要判断某些字段是否重复的问题,进行插入操作的话会导致数据库中插入重复的字段!下面把我的解决方法记录一下,如果对您有所帮助,欢迎拍砖!
工作中,发现Oracle数据库表中有许多重复的数据,而这个时候老板需要统计表中有多少条数据时(不包含重复数据),只想说一句MMP,库中好几十万数据,肿么办,无奈只能自己在网上找语句,最终成功解救,下面是我一个实验,很好理解。
row_number是通过标记排号方式去重,如果有2条或以上的重复数据,直接筛选删除即可。
加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
最近再解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
哈喽,我是狗哥。最近都在加班有点忙,一直没时间写文章。加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的 bug,很好解决,有点问题的是,修正线上的重复数据。
大家注意:因为微信改了推送机制,会有小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了。所以建议大家加个星标
线上库有6个表存在重复数据,其中2个表比较大,一个96万+、一个30万+,因为之前处理过相同的问题,就直接拿来了上次的Python去重脚本,脚本很简单,就是连接数据库,查出来重复数据,循环删除。
2、筛选出的重复数据。用来存储重复数据以外的剩余数据。用来存储要比较的所有数据的索引(即name),其中去除为空的name。
大家在项目开发过程中,数据库几乎是每一个后端开发者必备的技能,并且经常会遇到对于数据表重复数据的处理,一般需要去除重复保留最新的记录。今天这里给大家分享两种种方案,希望对大家日常开发能够提供一些帮助!
如果靠人眼来一个个的对比excel的两列数据来去重的话,数据量少还能勉强对比一下,如果几千、几万条数据肯定就需要进行程式化处理,excel对于这个问题给我们提供了很方便的解决方案,这里主要用到excel的“条件格式”这个功能来筛选对比两列数据中心的重复值,并将两列数据中的相同、重复的数据按规则进行排序方便选择,甚至是删除。
重复数据删除往往是指消除冗余子文件。不同于压缩,重复数据删除对于数据本身并没有改变,只是消除了相同的数据占用的存储容量。重复数据删除在减少存储、降低网络带宽方面有着显著的优势,并对扩展性有所帮助。
代码成功运行以后,可以看到文件夹内多了一个Excel表。 打开即可发现,里面相同数据仅剩下一个。
在进行数据分析和建模之前,数据清洗是一个必要的步骤。数据清洗是通过处理和转换原始数据,使其变得更加规范、准确和可用于分析的过程。Python提供了丰富的库和工具,使数据清洗变得更加高效和便捷。本文将详细介绍数据清洗的概念、常见的数据质量问题以及如何使用Python进行数据清洗。
DISTINCT函数,隶属于“筛选”类函数。微软将其划分为两种模式,列与表模式。但是白茶觉得微软哪怕是不区分出来,相信大家也是了解的。
让我们设计一个网络爬虫,它将系统地浏览和下载万维网。网状物爬虫也被称为网络蜘蛛、机器人、蠕虫、步行者和机器人。
union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下:
今天还是数据分析的学习,如果你觉得文章太长太没意思,欢迎拉到底部直接看大纲总结,一秒学会(学不会我也不负责,让你不看全文)。
本文通过一个例子,综合体现常用的数据筛选、排序、删重复行的操作方法。数据样式及要求如下:
很多时候我们都需要获取不重复值,也有很多方式可以获取不重复值,最方便的就是直接利用Excel内置的“高级筛选”功能。
在MySQL数据库中,当我们面对一个拥有大量数据的表,并且需要删除重复数据时,我们需要采用高效的方法来处理。今天了我们正好有张表,大概3千万条数据,重复数据有近2千多万条,本文将介绍几种方法,帮助您删除MySQL表中重复的数据中。
当表设计不规范或者应用程序的校验不够严谨时,就容易导致业务表产生重复数据。因此,学会高效地删除重复就显得尤为重要。
业务很简单:需要批量插入一些数据,数据来源可能是其他数据库的表,也可能是一个外部excel的导入
业务很简单:需要批量插入一些数据,数据来源可能是其他数据库的表,也可能是一个外部excel的导入。
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,但这两者从使用和效率上来说都有所不同。 1、对重复结果的处理:UNION在进行表链接后会筛选掉重复的记录,Union All不会去除重复记录。 2、对排序的处理:Union将会按照字段的顺序进行排序;UNION ALL只是简单的将两个结果合并后就返回。 从效率上说,UNION ALL 要比UNION快很多,所以,如果可以确认合并的两个结果集中不包含重复数据且不需要排序时的话,那么就使用UNION ALL。
最近,很多初学Power BI的朋友跟我说,Power BI用起来挺麻烦的,很不习惯啊,比如,想看一列数的总和都看不到……
有些 MySQL 数据表中可能存在重复的记录,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2]
本节教程将继续介绍SQL基础知识中的SELECT相关的一些知识,包括基础语法、多表连接、去重、排序、子查询等等SELECT方面的基础知识。
春天到了大地都复苏了,沉寂了很久的cpu也开始慢慢复苏了,所谓前人埋坑后人填坑,伴随着阿里云监控报警,线上CPU使用率暴增,于是就开始了排查之路。
在企业环境中,对磁盘空间的需求是惊人的。数据备份、文件服务器、软件镜像、虚拟磁盘等都需要占据大量的空间。对此,微软在Windows Server 2012中引入了重复数据删除技术。 重复数据删除技术通过将文件分割成小的 (32-128 KB) 且可变大小的区块、确定重复的区块,然后保持每个区块一个副本,区块的冗余副本由对单个副本的引用所取代。这样,文件不再作为独立的数据流进行存储,而是替换为指向存储在通用存储位置的数据块的存根。因此,我们可以在更小的空间中存储更多的数据。此外,该项技术还会对区块进行压缩以便进一步优化空间。 根据微软官方的介绍,该项技术有四大好处: 一、容量优化:“重复数据删除”使得 Windows Server 2012 能够在更少的物理空间中存储更多的数据,并获得比以前版本的 Windows 操作系统明显更高的存储效率。以前版本的 Windows 操作系统使用单实例存储 (SIS) 或 NTFS 文件系统压缩。“重复数据删除”使用可变分块大小和压缩,常规文件服务器的优化率为 2:1,而虚拟数据的优化率最高可达 20:1。 二、伸缩性和性能: Windows Server 2012 中的“重复数据删除”具有高度的可伸缩性,能够有效利用资源,并且不会产生干扰。它可以同时对多个大容量主数据运行,而不会影响服务器上的其他工作负载。通过控制 CPU 和内存资源的消耗,保持对服务器工作负载的较低影响。此外,用户可以灵活设置何时应该运行“重复数据删除”、指定用于消除重复的资源并为“重复数据删除”创建有关文件选择的策略。 三、可靠性和数据完整性:在对数据应用“重复数据删除”时,保持数据的完整性。Windows Server 2012 利用校验和值、一致性和身份验证来确保数据的完整性。此外,Windows Server 2012 中的“重复数据删除”会为所有元数据和最常引用的数据保持冗余,以确保这些数据可以在发生损坏时进行恢复。 四、与 BranchCache 相结合提高带宽效率:通过与 BranchCache 进行集成,同样的优化技术还可应用于通过 WAN 传输到分支机构的数据。这会缩短文件下载时间和降低带宽占用。 作为系统管理员,有那么好的技术,自然是要来尝试一下。 首先要为系统添加Data Deduplication角色
遗传力 (Heritability) 又称遗传率,指遗传方差在总方差(表型方差)中所占的比值。遗传力表明某一性状受到遗传控制的程度。它介于0到1之间,当遗传力为1时,表型变异完全由遗传因素决定,当遗传力为0时表型变异由环境因素决定。
来源:http://www.telami.cn/2018/when-mysql-batch-inserts-and-how-to-not-insert-duplicate-data/
上一篇我们介绍了在有主键的表中删除重复数据,今天就介绍如何删除没有主键的表的重复数据。
翻译过来的意思是:使用的select语句有不同的列数。 因为使用union的两个SQL语句产生的记录的表结构不一致。必须是结构完全一致的记录集合才可以使用UNION。我这边就是两个表的union字段数量不一样,导致上述报错。我的解决办法是在使用 UNION ALL 进行表合并操作时,使用 null as “xxx字段” 或者 ‘’ as “xxx字段”,保证字段顺序和数量一致性。
在网上看过一些解决方法 我在此给出的方法适用于无唯一ID的情形 表:TB_MACVideoAndPicture 字段只有2个:mac,content mac作为ID,正常情况下mac数据是唯一的,由于操作失误导致数据插入多次,导致出现多个mac,content重复数据,现在只保留一条,删除多余的 大体思想是给重复数据一个自增ID,过滤出每组里面最小ID,删除原数据中所有重复数据再将最小ID插入 --查询出所有重复数据,并给定递增id SELECT IDENTITY( INT,1,1 ) AS id ,
我们可能会出现这种情况,某个表原来设计不周全,导致表里面的数据数据重复,那么,如何对重复的数据进行删除呢? 重复的数据可能有这样两种情况,第一种时表中只有某些字段一样,第二种是两行记录完全一样。 一、对于部分字段重复数据的删除 先来谈谈如何查询重复的数据吧。 下面语句可以查询出那些数据是重复的: select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1 将上面的>号改为=号就可以查询出没有重复的数据了。 想要删除这些重复的数据,可以使用下面语句进行删除 delete from 表名 a where 字段1,字段2 in (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面的语句非常简单,就是将查询到的数据删除掉。不过这种删除执行的效率非常低,对于大数据量来说,可能会将数据库吊死。所以我建议先将查询到的重复的数据插入到一个临时表中,然后对进行删除,这样,执行删除的时候就不用再进行一次查询了。如下: CREATE TABLE 临时表 AS (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面这句话就是建立了临时表,并将查询到的数据插入其中。 下面就可以进行这样的删除操作了: delete from 表名 a where 字段1,字段2 in (select 字段1,字段2 from 临时表); 这种先建临时表再进行删除的操作要比直接用一条语句进行删除要高效得多。 这个时候,大家可能会跳出来说,什么?你叫我们执行这种语句,那不是把所有重复的全都删除吗?而我们想保留重复数据中最新的一条记录啊!大家不要急,下面我就讲一下如何进行这种操作。 在oracle中,有个隐藏了自动rowid,里面给每条记录一个唯一的rowid,我们如果想保留最新的一条记录, 我们就可以利用这个字段,保留重复数据中rowid最大的一条记录就可以了。 下面是查询重复数据的一个例子: select a.rowid,a.* from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 下面我就来讲解一下,上面括号中的语句是查询出重复数据中rowid最大的一条记录。 而外面就是查询出除了rowid最大之外的其他重复的数据了。 由此,我们要删除重复数据,只保留最新的一条数据,就可以这样写了: delete from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 随便说一下,上面语句的执行效率是很低的,可以考虑建立临时表,讲需要判断重复的字段、rowid插入临时表中,然后删除的时候在进行比较。 create table 临时表 as select a.字段1,a.字段2,MAX(a.ROWID) dataid from 正式表 a GROUP BY a.字段1,a.字段2; delete from 表名 a where a.rowid != ( select b.dataid from 临时表 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ); commit; 二、对于完全重复记录的删除 对于表中两行记录完全一样的情况,可以用下面语句获取到去掉重复数据后的记录: select distinct * from 表名 可以将查询的记录放到临时表中,然后再将原来的表记录删除,最后将临时表的数据导回原来的表中。如下: CREATE TABLE 临时表 AS (select distinct * from 表名); truncate table 正式表; --注:原先由于笔误写成了drop table 正式表;,现在已经改正过来 insert into 正式表 (select * from 临时表); drop table 临时表;
数据库版本 Server version: 5.1.41-community-log MySQL Community Server (GPL)
我们知道DISTINCT可以去掉重复数据,GROUP BY在分组后也会去掉重复数据,那这两个关键字在去掉重复数据时的效率,究竟谁会更高一点?
领取专属 10元无门槛券
手把手带您无忧上云