如今的移动应用早已不再是某种结构单一、功能简单的工具了。当我们的移动应用变得越来越庞杂,我们便会需要借用分析工具,来跟踪和分析App内的每一个部分。幸运的是,目前市面上有许多数据分析工具可供App开发
估计大家听大数据听得太多,耳朵都快起茧了吧?谁要IT界不如娱乐界那么精彩热闹,几年才憋出一个流行词,自然大家只要提到数据,都说“大”;提到服务,都说“云”。 言归正传,你弄明白大数据分析要分析什么数据了吗?(弄明白的高手可以直接飘过;没弄明白的,看下面的内容能不能涨姿势) 我们先来简单聊几句有关大数据分析工具的背景。无需置疑,现在大数据平台和大数据分析工具日益普及,作用是可以帮助企业收集和分析数据,好处是可以寻找有价值的商业信息和洞察,以改进产品与服务。大数据分析工具用于分析数据,可以开发预测模型(pre
现在,数据分析已经成为企业做出各种经营决策不可或缺的环节,无论是财务、市场、销售还是运营,都离不开数据分析。数据分析是将收集来的各种各样的数据进行分析,提取有用信息,对数据加以详细研究和概括总结的过程。数据分析可帮助企业作出判断,以便制定适当的经营决策。目前市面上的数据分析工具多如牛毛,笔者在此总结了三类最常用的数据分析工具,看看你用过哪一类呢?
导读:数据分析在运营工作中无处不在,无论是活动复盘、专题报告、项目优化,还是求职面试,数据分析都有一席之地。对于数据分析,我发现很多运营都有这样一些困惑: 不知道从哪里获取数据;不知道用什么样的工具;不清楚分析的方法论和框架;大部分的数据分析流于形式;其实,数据分析并没有大家想象的那么难!接触了很多数据从业者,总结了这篇文章,希望对有志于学习数据分析的运营同学有所帮助。 一、概念:数据和数据分析 其实大家一直都在接触数据和数据分析,但是对于两者具体的定义又很难说清楚。我曾经做过一个调查,问一些运营同学,下
敏捷,指反应(多指动作或言行)迅速快捷。敏捷和技术结合往往具有快速、简单、迭代的特点。如大家听说的敏捷开发就是指:以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。 数据库(DBA)与敏捷
有一个朋友跟我说,他之前呆过的一家互联网公司,抗风险能力很弱,整个运营部门all in在新增上,完全不考虑留存和活跃等指标。2017年的日新增用户数单从应用市场靠ASO来的都能做到日均3W,还没有算上其他渠道。但是留存特别低,7日活跃留存率只能维持在10%左右。后来,公司新来了一个产品经理,这个产品经理看到公司的问题,他逐步完善整个公司的数据体系。后来,运营数据指标体系慢慢清晰了,公司的用户增长也步入健康的增长状态,比当时all in新增的利润要可持续得多。他感叹说,数据分析好的话,完全能够实现可持续性的利润增长,深感数据分析的重要性。我也是完全认同他的观点,数据分析的价值潜力很大。今天,结合我多年的APP数据分析经验,给大家讲解一些APP数据分析的思路。记住,只聊思路,不聊实操,希望对一些对APP数据分析感兴趣的伙伴有所帮助。
如今,数据分析已成为互联网行业的热门话题,越来越多的企业都开始尝试借助数据分析工具来解决企业问题,但还有大多数抱着怀疑态度的小伙伴,盘旋在众人内心的疑问就是数据分析工具到底是做什么的?有什么作用呢?
在移动互联网快速发展,大量APP不断涌现,各行业、各领域竞争越来越激烈的的情况下,如何才能够自己的APP脱颖而出?如何获得更多的用户以及对现有的的用户进行更好的管理并创造更多价值?如何评估渠道效果和用户质量,制定正确的运营推广策略和方向? 这都对APP的数据分析和运营提出了更高的要求和挑战。数据分析,对于开发者和运营者都是十分重要的,漂亮的数据分析可以帮助在关键节点上线并推广应用,从而获得最大的利润。那么,该如何通过统计分析工具做好APP的数据分析和运营呢? 一、行业数据 行业数据对于一个APP来说,至关重
在大数据和人工智能行业,有众多与数据相关的岗位,名目繁多:数据分析师、数据产品经理、数据挖掘工程师、大数据工程师、数据开发工程师、机器学习工程师、算法工程师、NLP算法工程师、数据科学家等等。很多应届生或准备转行的朋友面对如此多的岗位名称,都会傻傻分不清楚。本文将这些数据相关的职位分为三类:数据分析师、大数据工程师和算法工程师,并从工作内容和技能要求来做一下分析,帮助新入行朋友选择适合自己的岗位。这里我暂且不谈最顶级的数据科学家,这部分人均为名校博士,全世界可能只有几千个,他们可以轻轻松松年薪百万,是整个食物链的最顶层。他们不需要找工作,都是工作在找他们。
盈利点:利用抖音图文电商带货实操分享的商机,可以通过分享实操经验吸引新手入局,帮助他们在抖音图文带货中获取纯佣金收入。 操作步骤:
App数据分析比Web流量分析更困难,因为对于Web,只要每一页都部署了GA基础代码,就能够收集分析很多有价值的数据了。但App分析则不同,如果只是加入基础的统计SDK,则只能收集到日活跃用户、留存率等一些基本的数据而已,完全无法进行深入分析。所以如何从“平地”建立起数据分析的高楼大厦,其中的方法就变得尤其重要。 本篇文章是《App数据分析全攻略》系列的第一篇,预计以后还会有 事件详解:看起来简单,但灵活度极高 事件应用案例:带你见识强大的Google Analytics 分享行为:极其重要,值得用一整套解
随着科学,技术和经济的进步,人类已经进入了信息化和大数据时代。人类生活的世界每天都在爆炸性地生成大量数据,并且面临着诸如宇宙繁星般的大量数据。如何收集,清理,整合,存储,计算,建模,训练,显示和分析数据,如挖掘黄金一样的找到有价值的数据并使用它,一直是许多公司困扰的问题。因此,为了解决这个问题并更好地分析和开发数据,大数据分析工具应运而生。
一个得心应手的数据分析工具,是每一位从业人员做数据分析的利器。面对浩如烟海的数据,如何选择合适的数据分析工具,成为运营、产品、市场等职能部门人员的一个难题,运用用数据分析工具,企业可以整合多种渠道的数据,快速完成和完善数据分析。那么如何选择数据分析工具呢?笔者总结了以下五点供大家参考。
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
image.png 数据是一个产品每天都要盯着的东西,虽说数字也会撒谎,但是在产品设计中数据,常常作为辅助设计决策和与研发沟通的必不可少的东西之一。 1. 移动产品经理需要跟踪app的哪些数据? 在做数据分析之前,对移动产品人员来说,首先要了解在移动互联网领域,我们需要关注那些数据呢? 讨论发现,不同的产品关注的数据数据分为:基本数据、跟产品类别无关的数据和跟产品类别相关的数据。 基础数据:下载量、激活量、新增用户量、活跃用户 社交:用户分布、用户留存(次日、3日、7日、月、次月、3月) 电商:淘宝指数、网
一年又过半了,不知各位小伙伴的年中总结有没有准备好?例如老板要求的财务报表,发票报告,销售业绩等报告。数据量太大,报告类别太多,使得加班成为常态。面对海量数据,无法解决。实际上,我们可以使用可靠的数据分析工具来完成此分析。企业也是如此。使用数据分析工具,企业可以集成多个渠道的数据并快速完成并完善数据分析。那么,数据分析工具该怎么选?亿信华辰小编给大家总结了以下四点供大家参考。
佛瑞斯特研究公司(Forrester)的研究人员发现,2016年,近40%的公司正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。 研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美
盈利点:利用早安系列公众号的正能量鸡汤文,每天流量主收入100左右的商机,可以通过AI自动生成鸡汤文,提供情绪价值,吸引流量并获取赞赏收入。
盈利点:利用小红书邀约旅游博主的商机,可以通过真实行程路线获得流量,同时警示假攻略的危险,可以提供真实的旅游内容,吸引用户关注,同时警示用户避免虚假信息。
目录: 大数据分析的五个基本方面 如何选择适合的数据分析工具 如何区分三个大数据热门职业 从菜鸟成为数据科学家的 9步养成方案 从入门到精通—快速学会大数据分析 一、大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格
如果大数据是一块蛋糕,那么大数据分析工具就是切蛋糕的刀叉。人们都期待着能用“刀叉”从大数据中挖出自己想要的“价值”,因此大数据分析工具被人们寄予厚望。而云计算技术的兴起似乎又给大数据注入了新的推进剂,那么大数据和云计算的结合又会发生怎样的化学反应?对大数据分析工具的发展又有怎样的影响?
日常运营APP的同学都知道 ,要想成为APP消息推送的王者级玩家,不仅要做好推送前的SDK和API的接入,在创建推送中熟练使用各个推送能力,更要不断提高推送效果的正向反馈,学会运用:
有人说AI工程师,也有人说高级咨询师,还有人说网络安全工程师.....从百度,知乎看到的答案层出不穷,但80%的答案里都出现了一个相同的职业,那就是数据分析师。
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢? 工具抢了人
自动化营销(Marketing Automation)指的是基于大数据的用于执行、管理和自动完成营销任务和流程的云端的一种软件。这种软件改变了人工操作重复性市场营销流程,取而代之的是为特定目的建立的用以面向性能应用软件。
BI工具即商业智能分析工具,是指使用一套方法和技术来准备、呈现和帮助分析数据的工具。将企业中已有的数据转换为知识,从而帮助企业做出明智的商业决策。这里说到的数据包括订单、库存、交易账目、客户和供应商等数据,它们来自于企业业务系统,企业所在行业和竞争对手,以及来自于企业所在的其他外部环境。
盈利点:利用Tiktok shop上的厨房好物商机,可以投放具有较大利润空间的厨房产品,并通过Tiktok shop平台进行销售,获取利润。
盈利点:利用斯坦福超人前传开源的商机,可以开发基于AI特工在数字世界生活的虚拟游戏,吸引玩家体验多智能体涌现的规模和无限新可能性,从而盈利。
1. 懂业务 从事数据分析工作的前提就是需要懂业务,即熟悉行业、公司业务及流程,甚至有自己独到见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。 例如公司2011年的运营收入是1000万元,那么不熟业务的数据分析师看到的只是1000万这个数字,而熟悉业务的数据分析师,则看到的不仅是1000万这个数字,他还看到数字背后隐藏的信息,如1000万元是有哪几个业务收入构成,哪个业务收入占主要部分,哪个业务收入是最小占比,最高业务收入的地区又是哪个地区等信息。 这就是懂业务与不懂业
盈利点:利用小红书热帖中雍和宫手串助力考研上岸的需求火爆,可以代理雍和宫手串并进行销售,同时可以拓展更多与本命年相关产品,如开光手串等,以满足用户需求。
近些年来,很多意见领袖一直在强调大数据的价值,这些价值既蕴含在企业内部数据,也蕴含在外部数据中。大家共同强调的一点是,大数据的真正价值在于数据驱动决策——通过数据来做出的决定,要优于常规决策。当你的想
私以为,数据分析行业是可以长期发展下去的,但是对于数据分析师的专业技能的要求会越来越严格。
| 导语 2019年底开始我开始接触数据分析,从初期的数据分析小白,到现在慢慢入门有些经验,想把我这里学到的数据分析的方法以最简单的方式解释给和当时的我一样小白的同学们,以下内容将分为【数据分析的意义】【基础指标体系搭建】【数据分析的方法】三大模块进行介绍 数据分析的意义 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析是当前企业管理过程中不容忽视的重要支撑点,企业需要有完整、真实、有效的数据进行支撑,才能够对未来
虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。 成本 早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。 简易 越来越多的工具是面向非专家级别的用户设计的。早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。 性能 可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台
盈利点:利用公众号流量主平台,选择养老金作为方向,可以通过推广养老金相关内容获取流量,进而实现盈利。
这两年,随着大数据、精益化运营、增长黑客等概念的传播,数据分析的思维越来越深入人心。处于互联网最前沿的产品经理们接触了大量的用户数据,但是却一直困扰于如何做好数据分析工作。 那么产品经理该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?产品经理做数据分析有哪些具体的方法?又如何学习数据分析?本文将和大家分享一下这些问题。 数据分析体系:道、术、器 “道”是指价值观。产品经理要想是做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 “术
引言 价值要点 今年年初,普华永道发布了一份针对77国逾1300位CEO的调查。结果显示,在推动数字技术发展、提高组织能力方面,数据挖掘分析占有第二重要的战略地位,仅次于提高客户参与度的移动技术。同时,这些CEO还认为,数据分析对于提供更好的客户体验并提高业务效率来说是一最为重要的一项能力。 需要注意的是,数据本身并不能提供洞识。如果数据分析的结果无法在组织内部分享和公开,那就无法促进业务成果和运营效率的最优化。 如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平
“做数据分析,不要建立一种以掌握的软件来给自己分级的心态,但是一定要用工具避免误入职业发展的歧途!”
1.当我们要查数据时,技术人手不够,永远在排期。不如要了只读权限自己干,取数分析一条龙。
报表软件是企业管理的基本措施和途径,是企业的基本业务要求和实施 BI 战略的基础。报表可以帮助企业访问、格式化数据,并把数据信息以可靠和安全的方式呈现给使用者,深入洞察企业运营状况,是企业发展的强大驱动力。
盈利点:利用小红书体制内聊天室吸引精准体制内人群,围绕体制内人群的晋升、考试等需求进行变现。
对于数据分析工具,我们通过会有一个疑问,在众多的数据分析工具中,到底有什么区别,哪一个更好,我又应该学习哪一个呢?
在现代企业中,数据分析和质量管理已经成为重要的工作之一。而Minitab软件则是在这样的背景下应运而生的,它是一款用于数据分析和质量管理的统计软件。本文将从软件的独特竞争力和使用方法两个方面进行详细讨论,并结合实际案例进行说明。
给CDA的小伙伴们打个招呼,介绍下您和您刚刚出版的新书,是什么原因激发了您写这本书的?
今年年初,普华永道发布了一份针对77国逾1300位CEO的调查。结果显示,在推动数字技术发展、提高组织能力方面,数据挖掘分析占有第二重要的战略地位,仅次于提高客户参与度的移动技术。同时,这些CEO还认为,数据分析对于提供更好的客户体验并提高业务效率来说是一最为重要的一项能力。 需要注意的是,数据本身并不能提供洞识。如果数据分析的结果无法在组织内部分享和公开,那就无法促进业务成果和运营效率的最优化。 如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平均分析到的
大家都知道,随着现在互联网的快速发展,电商行业也是与日俱增,而这又带来了大量数据需要分析,那么电商企业数据分类该怎么做呢?亿信华辰小编总结了这几点,希望对你有所帮助!
如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平均分析到的数据只占其可用数据的不到1%。剩下那没有分析的99%会对公司造成什么样的影响? 今年年初,普华
通过部署和使用大数据分析工具,分析流程可以帮助公司提高运营效率,产生新的利润,获得竞争优势。企业可选择的数据分析应用程序有很多。比如描述性分析善于描述已发生的事情,揭示因果关系。描述性分析主要输出查询、报表和历史数据可视化。
领取专属 10元无门槛券
手把手带您无忧上云