首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow 加载多个模型的方法

采用 TensorFlow 的时候,有时候我们需要加载的不止是一个模型,那么如何加载多个模型呢?...加载 TensorFlow 模型 在介绍加载多个模型之前,我们先介绍下如何加载单个模型,官方文档:https://www.tensorflow.org/programmers_guide/meta_graph...如果使用加载单个模型的方式去加载多个模型,那么就会出现变量冲突的错误,也无法工作。这个问题的原因是因为一个默认图的缘故。冲突的发生是因为我们将所有变量都加载到当前会话采用的默认图中。...因此,如果我们希望加载多个模型,那么我们需要做的就是把他们加载在不同的图,然后在不同会话中使用它们。 这里,自定义一个类来完成加载指定路径的模型到一个局部图的操作。...的机制的话,加载多个模型并不是一件困难的事情。

2.7K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TensorFlow模型持久化~模型加载

    前面介绍了模型的保存: [L1]TensorFlow模型持久化~模型保存 通过TensorFlow提供tf.train.Saver类提供的save函数保存模型,生成对应的四个文件,因为TensorFlow...1.模型载入 由于保存模型的时候TensorFlow将计算图的结构以及计算图上的变量参数值分开保存。所以加载模型我从计算图的结构和计算图上的变量参数值分别考虑。...仅加载模型中保存的变量 在[L1]TensorFlow模型持久化~模型保存中我们也提到了,add_model.ckpt.data-00000-of-00001文件是保存TensorFlow当前变量值,而...add_model.ckpt.index文件中保存的是TensorFlow当前的变量名,所以如果要加载模型中保存的变量的时候,一定不要删除这两个文件。...对于加载模型的操作TensorFlow也提供了很方便的函数调用,我们还记得保存模型时候将计算图保存到.meta后缀的文件中。那此时只需要加载这个文件即可: ?

    76300

    Tensorflow SavedModel模型的保存与加载

    这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...SavedModel模型,并加载之。...其主要优点是SaveModel与语言无关,比如可以使用python语言训练模型,然后在Java中非常方便的加载模型。当然这也不是说checkpoints模型格式做不到,只是在跨语言时比较麻烦。...要保存该模型,我们还需要对代码作一点小小的改动。 添加命名 在输入和输出Ops中添加名称,这样我们在加载时可以方便的按名称引用操作。...这个时候tag就可以用来区分不同的MetaGraphDef,加载的时候能够根据tag来加载模型的不同计算图。

    5.5K30

    Tensorflow加载预训练模型和保存模型

    大家好,又见面了,我是你们的朋友全栈君。 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。.../checkpoint_dir/MyModel-1000.meta') 上面一行代码,就把图加载进来了 3.2 加载参数 仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases

    1.5K30

    Tensorflow加载预训练模型和保存模型

    使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。.../checkpoint_dir/MyModel-1000.meta') 上面一行代码,就把图加载进来了 3.2 加载参数 仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases

    3K30

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...如果从头训练显然没有finetune收敛速度快,但是模型又没法全部加载。此时,只需将未修改部分参数加载到当前网络即可。...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...那么使用如下示例代码即可加载: import tensorflow as tf def restore(sess, ckpt_path): vars = tf.trainable_variables(

    2.3K271

    使用OpenCV加载TensorFlow2模型

    Suaro希望使用OpenCV来实现模型加载与推演,但是没有成功,因此开了issue寻求我的帮助。...所以,我不仅帮TA解决了issue,还要以此为样本,与大家分享下一些提issue时的注意事项。 首先,我们先解决OpenCV加载模型的问题。...使用OpenCV加载模型 OpenCV在3.0的版本时引入了一个dnn模块,实现了一些基本的神经网络模型layer。在最新的4.5版本中,dnn模块使用函数 readNet 实现模型加载。...不过根据官方解释,OpenCV不支持TensorFlow所推荐的模型保存格式 saved_model 。所以在加载模型之前,模型需要首先被冻结。...冻结网络 在之前的文章“TensorFlow如何冻结网络模型”中介绍过了冻结网络的具体含义以及原理。但是在TensorFlow2中网络冻结似乎被弃用了,文中提到的冻结脚本也无法使用。

    1.7K20

    Tensorflow笔记:模型保存、加载和Fine-tune

    前言 尝试过迁移学习的同学们都知道,Tensorflow的模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型的保存到加载,再到使用,力求理清这个流程。 1....我们先说后一个,如果你不光有模型文件,还有源码,可以把源码构建模型那部分复制过来,然后只加载变量就好,这是手动重新搭建网络结构: import tensorflow as tf size = 10 #...2.3 saved_model模式加载 前两种加载方法想要获取tensor,要么需要手动搭建网络,要么需要知道tensor的name,如果用模型和训模型的不是同一个人,那在没有源码的情况下,就不方便获取每个...Fine-tune 最后不管保存还是加载模型,多数情况都是为了能够进行迁移学习。其实大部分无非就是将模型加载进来之后,使用某一个节点的值,作为我们后续模型的输入呗。...比如我要用前面的模型结果作为特征通过一元罗辑回归去预测z,这样新的网络结构就是这样: import numpy as np import tensorflow as tf # 加载模型部分,直接从pb

    1.9K41

    异步加载脚本保持执行顺序

    首先是外部脚本和行内脚本,对于异步加载的脚本,会导致竞争状态,使得出现未定义的错。...2.Window onload: 通过监听window的onload事件来触发行内代码的执行。只要确保外部脚本在window。Onload之前下载执行就可以保持执行顺序。 运行结果: ?...3.定时器: 采用轮询方法来抱着在行内脚本执行之前所依赖的外部脚本已经加载。 运行结果: ?...设置太大会导致和windon.onload的方法一样,脚本加载完成无法立即执行行内脚本。另外,如果脚本出错,轮询会无限进行下去。...代码: /* 数组queuedScripts存储执行队列中的脚本,每个脚本是拥有三个属性的对象: response: XHR响应 onload: 脚本加载后触发的函数 bOrder: 如果该脚本需要依赖其他脚本按顺序执行

    1.8K20

    【TensorFlow2.x开发—基础】 模型保存、加载、使用

    格式保存模型,保存后是xxx.h5的文件 model.save("my_model.h5") 1.2)加载使用模型 加载模型: # 重新创建完成相同的模型,包括权值和优化程序等 new_model =...格式也是使用model.save() 保存模型,使用tf.keras.models.loda_model加载模型;这种方式于Tensorflow Serving兼容。...2.2)加载使用模型 加载保存好的模型: new_model = tf.keras.models.load_model("saved_model/my_model") # 看到模型的结构 new_model.summary...保存,使用tf.keras.models.loda_model加载模型;这种方式于Tensorflow Serving兼容。...2.2)加载使用模型 加载保存好的模型: ​ 使用模型: ​ 代码版 HDF5格式: # 导入Tensorflow和依赖项 import os import tensorflow as tf from

    4.6K00

    2.1 TensorFlow模型的理解

    TensorFlow主要由三个模型构成:计算模型,数据模型,运行模型。本节主要介绍这三个模型的概念和应用。 1. TensorFlow系统架构 ? 2....再TensorFlow中,使用计算图定义计算,使用会话执行计算,整个过程以张量(Tensor)这个数据机构为基础。接下来主要介绍这三个模型:计算模型,数据模型,运行模型。 3....计算模型-计算图 3.1 概念 顾名思义,计算图的主要构成是节点和边,它是表达计算的一种方式。计算图中的每一个节点代表一个计算,而节点之间的边描述的是计算之间的依赖关系。...数据模型-张量 张量是TensorFlow中的数据结构,也就是管理数据的形式。可简单的理解为多维数组,其中零阶张量为标量,一阶便是向量,n阶则为n维数组。...运行模型-会话(session) TensorFlow通过计算图定义运算,通过会话管理运算。会话拥有并管理tensorflow程序运行时的所有资源。

    98420

    tensorflow的模型持久化

    以下代码中给出了加载这个已经保存的tensorflow模型的方法。import tensorflow as tf# 使用核保存模型代码中一样的方式来声明变量。...在加载模型的程序中也是先定义了tensorflow计算图上的所有运算,并声明了一个tf.train.Saver类。...两段代码唯一不同的是,在加载模型的代码中没有运行变量的初始化过程,而是将变量的值通过已经保存的模型加载进来。如果不希望重复定义图上的运算,也可以直接加载已经持久化的图。以下代码给出了一个样例。...为了解决这个问题,tensorflow可以通过字典(dictionary)将模型保存时的变量名的需要加载的变量联系起来。...和持久化tensorflow模型运算对应的是加载tensorflow模型的运算,这个运算的名称是由restore_op_name属性指定。

    1.9K30
    领券