首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark作业在CPU挂起为100%的worker上挂起

是指在Spark集群中,某个worker节点的CPU利用率达到100%,导致该节点无法继续执行其他任务,从而导致Spark作业无法正常进行。

这种情况可能是由于以下原因导致的:

  1. 资源不足:该worker节点的资源(如CPU、内存)不足以支持当前的Spark作业,导致CPU利用率达到100%。解决方法可以是增加该节点的资源配置,如增加CPU核数或内存容量。
  2. 数据倾斜:Spark作业中某些数据分区的数据量过大,导致某个任务的计算量过大,从而使得该任务所在的worker节点的CPU利用率达到100%。解决方法可以是对数据进行合理的分区策略,避免数据倾斜。
  3. 代码优化问题:Spark作业中的代码存在性能问题,导致某个任务的计算量过大,使得该任务所在的worker节点的CPU利用率达到100%。解决方法可以是对代码进行优化,减少计算量或提高计算效率。

针对这种情况,腾讯云提供了一系列的产品和服务来支持Spark作业的运行和优化:

  1. 腾讯云弹性MapReduce(EMR):EMR是一种大数据处理服务,支持Spark作业的运行。它提供了弹性的计算资源,可以根据作业的需求自动调整集群规模,从而避免资源不足的问题。
  2. 腾讯云容器服务(TKE):TKE是一种容器化的云计算服务,可以将Spark作业打包成容器,并在集群中进行部署和管理。通过TKE,可以更好地管理和调度作业,提高资源利用率。
  3. 腾讯云函数计算(SCF):SCF是一种无服务器计算服务,可以将Spark作业以函数的形式运行。通过SCF,可以根据作业的需求自动分配计算资源,避免资源不足的问题。
  4. 腾讯云云服务器(CVM):CVM是一种弹性计算服务,可以提供高性能的虚拟机实例来支持Spark作业的运行。通过合理配置CVM实例的规格,可以满足作业的计算需求。

总结:当Spark作业在CPU挂起为100%的worker上挂起时,可以通过增加资源配置、优化代码、调整数据分区策略等方式来解决。腾讯云提供了多种产品和服务来支持Spark作业的运行和优化,包括弹性MapReduce、容器服务、函数计算和云服务器等。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Spark优化(二)----资源调优、并行度调优

    在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使用原理有一个清晰的认识,并知道在Spark作业运行过程中,有哪些资源参数是可以设置的,以及如何设置合适的参数值。

    02

    spark面试题目_面试提问的问题及答案

    1.Spark master使用zookeeper进行HA的,有哪些元数据保存在Zookeeper? 答:spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors。standby节点要从zk中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。另外,Master切换需要注意2点 1)在Master切换的过程中,所有的已经在运行的程序皆正常运行!因为Spark Application在运行前就已经通过Cluster Manager获得了计算资源,所以在运行时Job本身的调度和处理和Master是没有任何关系的! 2) 在Master的切换过程中唯一的影响是不能提交新的Job:一方面不能够提交新的应用程序给集群,因为只有Active Master才能接受新的程序的提交请求;另外一方面,已经运行的程序中也不能够因为Action操作触发新的Job的提交请求; 2.Spark master HA 主从切换过程不会影响集群已有的作业运行,为什么? 答:因为程序在运行之前,已经申请过资源了,driver和Executors通讯,不需要和master进行通讯的。 3.Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么? 答:1)粗粒度:启动时就分配好资源, 程序启动,后续具体使用就使用分配好的资源,不需要再分配资源;好处:作业特别多时,资源复用率高,适合粗粒度;不好:容易资源浪费,假如一个job有1000个task,完成了999个,还有一个没完成,那么使用粗粒度,999个资源就会闲置在那里,资源浪费。2)细粒度分配:用资源的时候分配,用完了就立即回收资源,启动会麻烦一点,启动一次分配一次,会比较麻烦。 4.如何配置spark master的HA? 1)配置zookeeper 2)修改spark_env.sh文件,spark的master参数不在指定,添加如下代码到各个master节点 export SPARK_DAEMON_JAVA_OPTS=”-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk01:2181,zk02:2181,zk03:2181 -Dspark.deploy.zookeeper.dir=/spark” 3) 将spark_env.sh分发到各个节点 4)找到一个master节点,执行./start-all.sh,会在这里启动主master,其他的master备节点,启动master命令: ./sbin/start-master.sh 5)提交程序的时候指定master的时候要指定三台master,例如 ./spark-shell –master spark://master01:7077,master02:7077,master03:7077 5.Apache Spark有哪些常见的稳定版本,Spark1.6.0的数字分别代表什么意思? 答:常见的大的稳定版本有Spark 1.3,Spark1.6, Spark 2.0 ,Spark1.6.0的数字含义 1)第一个数字:1 major version : 代表大版本更新,一般都会有一些 api 的变化,以及大的优化或是一些结构的改变; 2)第二个数字:6 minor version : 代表小版本更新,一般会新加 api,或者是对当前的 api 就行优化,或者是其他内容的更新,比如说 WEB UI 的更新等等; 3)第三个数字:0 patch version , 代表修复当前小版本存在的一些 bug,基本不会有任何 api 的改变和功能更新;记得有一个大神曾经说过,如果要切换 spark 版本的话,最好选 patch version 非 0 的版本,因为一般类似于 1.2.0, … 1.6.0 这样的版本是属于大更新的,有可能会有一些隐藏的 bug 或是不稳定性存在,所以最好选择 1.2.1, … 1.6.1 这样的版本。 通过版本号的解释说明,可以很容易了解到,spark2.1.1的发布时是针对大版本2.1做的一些bug修改,不会新增功能,也不会新增API,会比2.1.0版本更加稳定。 6.driver的功能是什么? 答: 1)一个Spark作业运行时包括一个Driver进程,也是作业的主进程,具有main函数,并且有SparkContext的实例,是程序的人口点;2)功能:负责向集群申请资源,向master注册信息,负责了作业的调度,,负责作业的解析、生成Stage并调度Task到E

    02

    大数据技术之_19_Spark学习_07_Spark 性能调优 + 数据倾斜调优 + 运行资源调优 + 程序开发调优 + Shuffle 调优 + GC 调优 + Spark 企业应用案例

    每一台 host 上面可以并行 N 个 worker,每一个 worker 下面可以并行 M 个 executor,task 们会被分配到 executor 上面去执行。stage 指的是一组并行运行的 task,stage 内部是不能出现 shuffle 的,因为 shuffle 就像篱笆一样阻止了并行 task 的运行,遇到 shuffle 就意味着到了 stage 的边界。   CPU 的 core 数量,每个 executor 可以占用一个或多个 core,可以通过观察 CPU 的使用率变化来了解计算资源的使用情况,例如,很常见的一种浪费是一个 executor 占用了多个 core,但是总的 CPU 使用率却不高(因为一个 executor 并不总能充分利用多核的能力),这个时候可以考虑让一个 executor 占用更少的 core,同时 worker 下面增加更多的 executor,或者一台 host 上面增加更多的 worker 来增加并行执行的 executor 的数量,从而增加 CPU 利用率。但是增加 executor 的时候需要考虑好内存消耗,因为一台机器的内存分配给越多的 executor,每个 executor 的内存就越小,以致出现过多的数据 spill over 甚至 out of memory 的情况。   partition 和 parallelism,partition 指的就是数据分片的数量,每一次 task 只能处理一个 partition 的数据,这个值太小了会导致每片数据量太大,导致内存压力,或者诸多 executor 的计算能力无法利用充分;但是如果太大了则会导致分片太多,执行效率降低。在执行 action 类型操作的时候(比如各种 reduce 操作),partition 的数量会选择 parent RDD 中最大的那一个。而 parallelism 则指的是在 RDD 进行 reduce 类操作的时候,默认返回数据的 paritition 数量(而在进行 map 类操作的时候,partition 数量通常取自 parent RDD 中较大的一个,而且也不会涉及 shuffle,因此这个 parallelism 的参数没有影响)。所以说,这两个概念密切相关,都是涉及到数据分片的,作用方式其实是统一的。通过 spark.default.parallelism 可以设置默认的分片数量,而很多 RDD 的操作都可以指定一个 partition 参数来显式控制具体的分片数量。   看这样几个例子:   (1)实践中跑的 Spark job,有的特别慢,查看 CPU 利用率很低,可以尝试减少每个 executor 占用 CPU core 的数量,增加并行的 executor 数量,同时配合增加分片,整体上增加了 CPU 的利用率,加快数据处理速度。   (2)发现某 job 很容易发生内存溢出,我们就增大分片数量,从而减少了每片数据的规模,同时还减少并行的 executor 数量,这样相同的内存资源分配给数量更少的 executor,相当于增加了每个 task 的内存分配,这样运行速度可能慢了些,但是总比 OOM 强。   (3)数据量特别少,有大量的小文件生成,就减少文件分片,没必要创建那么多 task,这种情况,如果只是最原始的 input 比较小,一般都能被注意到;但是,如果是在运算过程中,比如应用某个 reduceBy 或者某个 filter 以后,数据大量减少,这种低效情况就很少被留意到。   最后再补充一点,随着参数和配置的变化,性能的瓶颈是变化的,在分析问题的时候不要忘记。例如在每台机器上部署的 executor 数量增加的时候,性能一开始是增加的,同时也观察到 CPU 的平均使用率在增加;但是随着单台机器上的 executor 越来越多,性能下降了,因为随着 executor 的数量增加,被分配到每个 executor 的内存数量减小,在内存里直接操作的越来越少,spill over 到磁盘上的数据越来越多,自然性能就变差了。   下面给这样一个直观的例子,当前总的 cpu 利用率并不高:

    02
    领券