首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    spark dataframe新增列的处理

    往一个dataframe新增某个列是很常见的事情。 然而这个资料还是不多,很多都需要很多变换。而且一些字段可能还不太好添加。 不过由于这回需要增加的列非常简单,倒也没有必要再用UDF函数去修改列。...利用withColumn函数就能实现对dataframe中列的添加。但是由于withColumn这个函数中的第二个参数col必须为原有的某一列。所以默认先选择了个ID。...scala> val df = sqlContext.range(0, 10) df: org.apache.spark.sql.DataFrame = [id: bigint] scala>...                                     ^ scala> df.withColumn("bb",col("id")*0) res2: org.apache.spark.sql.DataFrame... 0| |  8|  0| |  9|  0| +---+---+ scala> res2.withColumn("cc",col("id")*0) res5: org.apache.spark.sql.DataFrame

    83110

    Spark高级操作之json复杂和嵌套数据结构的操作一

    一,基本介绍 本文主要讲spark2.0版本以后存在的Sparksql的一些实用的函数,帮助解决复杂嵌套的json数据格式,比如,map和嵌套结构。...Spark2.1在spark 的Structured Streaming也可以使用这些功能函数。 下面几个是本文重点要讲的方法。...这个case class总共有两个字段:整型(作为device id)和一个字符串(json的数据结构,代表设备的事件) // define a case class case class DeviceData...在dataset的api select中使用from_json()方法,我可以从一个json 字符串中按照指定的schema格式抽取出来作为DataFrame的列。...七,验证 为了验证我们的DataFrame转化为json String是成功的我们将结果写入本地磁盘。

    14.9K70

    Spark高级操作之json复杂和嵌套数据结构的操作二

    一,准备阶段 Json格式里面有map结构和嵌套json也是很合理的。本文将举例说明如何用spark解析包含复杂的嵌套数据结构,map。...现实中的例子是,一个设备的检测事件,二氧化碳的安全你浓度,高温数据等,需要实时产生数据,然后及时的告警处理。...二,如何使用explode() Explode()方法在spark1.3的时候就已经存在了,在这里展示一下如何抽取嵌套的数据结构。...Explode为给定的map的每一个元素创建一个新的行。比如上面准备的数据,source就是一个map结构。Map中的每一个key/value对都会是一个独立的行。...一旦你将嵌套数据扁平化之后,再进行访问,就跟普通的数据格式没啥区别了。

    8.7K110

    【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

    如何从 Spark 的 DataFrame 中取出具体某一行?...根据阿里专家Spark的DataFrame不是真正的DataFrame-秦续业的文章-知乎[1]的文章: DataFrame 应该有『保证顺序,行列对称』等规律 因此「Spark DataFrame 和...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...{Bucketizer, QuantileDiscretizer} spark中 Bucketizer 的作用和我实现的需求差不多(尽管细节不同),我猜测其中也应该有相似逻辑。

    4.1K30

    Apache Spark中使用DataFrame的统计和数学函数

    我们在Apache Spark 1.3版本中引入了DataFrame功能, 使得Apache Spark更容易用....受到R语言和Python中数据框架的启发, Spark中的DataFrames公开了一个类似当前数据科学家已经熟悉的单节点数据工具的API. 我们知道, 统计是日常数据科学的重要组成部分....列联表是统计学中的一个强大的工具, 用于观察变量的统计显着性(或独立性). 在Spark 1.4中, 用户将能够将DataFrame的两列进行交叉以获得在这些列中观察到的不同对的计数....5.出现次数多的项目 找出每列中哪些项目频繁出现, 这对理解数据集非常有用. 在Spark 1.4中, 用户将能够使用DataFrame找到一组列的频繁项目....如果你不能等待, 你也可以自己从1.4版本分支中构建Spark: https://github.com/apache/spark/tree/branch-1.4 通过与Spark MLlib更好的集成,

    14.6K60

    基于Alluxio系统的Spark DataFrame高效存储管理技术

    同时通过改变DataFrame的大小来展示存储的DataFrame的规模对性能的影响。 存储DataFrame Spark DataFrame可以使用persist() API存储到Spark缓存中。...Spark支持将DataFrame写成多种不同的文件格式,在本次实验中,我们将DataFrame写成parquet文件。...show() 我们分别从Alluxio中 parquet文件以及各种Spark存储级别缓存中读取DataFrame,并进行上述的聚合计算操作。...在本文的实验环境中,对于各种Spark内置的存储级别, DataFrame规模达到20 GB以后,聚合操作的性能下降比较明显。...这是因为使用Alluxio缓存DataFrame时,Spark可以直接从Alluxio内存中读取DataFrame,而不是从远程的公有云存储中。

    1.1K50

    Spark 1.4为DataFrame新增的统计与数学函数

    Spark一直都在快速地更新中,性能越来越快,功能越来越强大。我们既可以参与其中,也可以乐享其成。 目前,Spark 1.4版本在社区已经进入投票阶段,在Github上也提供了1.4的分支版本。...最近,Databricks的工程师撰写了博客,介绍了Spark 1.4为DataFrame新增的统计与数学函数。...为DataFrame新增加的数学函数都是我们在做数据分析中常常用到的,包括cos、sin、floor、ceil以及pow、hypot等。...以上新特性都会在Spark 1.4版本中得到支持,并且支持Python、Scala和Java。...在未来发布的版本中,DataBricks还将继续增强统计功能,并使得DataFrame可以更好地与Spark机器学习库MLlib集成,例如Spearman Correlation(斯皮尔曼相关)、针对协方差运算与相关性运算的聚合函数等

    1.2K70

    Python中的DataFrame模块学

    初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...重新调整index的值   import pandas as pd   data = pd.DataFrame()   data['ID'] = range(0,3)   # data =   # ID...('user.csv')   print (data)   将DataFrame数据写入csv文件   to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv   import...异常处理   过滤所有包含NaN的行   dropna()函数的参数配置参考官网pandas.DataFrame.dropna   from numpy import nan as NaN   import...'表示去除行 1 or 'columns'表示去除列   # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有

    2.5K10

    【赵渝强老师】Spark SQL的数据模型:DataFrame

    通过SQL语句处理数据的前提是需要创建一张表,在Spark SQL中表被定义DataFrame,它由两部分组成:表结构的Schema和数据集合RDD,下图说明了DataFrame的组成。  ...在Spark SQL中创建DataFrame。...样本类类似于常规类,带有一个case 修饰符的类,在构建不可变类时,样本类非常有用,特别是在并发性和数据传输对象的上下文中。在Spark SQL中也可以使用样本类来创建DataFrame的表结构。...scala> df.show二、使用StructType定义DataFrame表结构  Spark 提供了StructType用于定义结构化的数据类型,类似于关系型数据库中的表结构。...DataFrame,这些文件位于Spark安装目录下的/examples/src/main/resources中。

    12010

    Spark将Dataframe数据写入Hive分区表的方案

    欢迎您关注《大数据成神之路》 DataFrame 将数据写入hive中时,默认的是hive默认数据库,insert into没有指定数据库的参数,数据写入hive表或者hive表分区中: 1、将DataFrame...数据写入到hive表中 从DataFrame类中可以看到与hive表有关的写入API有一下几个: registerTempTable(tableName:String):Unit, inserInto(...case类类型,然后通过toDF转换DataFrame,调用insertInto函数时,首先指定数据库,使用的是hiveContext.sql("use DataBaseName") 语句,就可以将DataFrame...2、将DataFrame数据写入hive指定数据表的分区中 hive数据表建立可以在hive上建立,或者使用hiveContext.sql("create table....")...,使用saveAsTable时数据存储格式有限,默认格式为parquet,将数据写入分区的思路是:首先将DataFrame数据写入临时表,之后由hiveContext.sql语句将数据写入hive分区表中

    16.4K30
    领券