最近工作有点忙,所以文章更新频率低了点,希望大家可以谅解,好了,言归正传,下面进入今天的主题: 如何使用scala+spark读写Hbase 软件版本如下: scala2.11.8 spark2.1.0...关于批量操作Hbase,一般我们都会用MapReduce来操作,这样可以大大加快处理效率,原来也写过MR操作Hbase,过程比较繁琐,最近一直在用scala做spark的相关开发,所以就直接使用scala...整个流程如下: (1)全量读取hbase表的数据 (2)做一系列的ETL (3)把全量数据再写回hbase 核心代码如下: 从上面的代码可以看出来,使用spark+scala操作hbase是非常简单的。...下面我们看一下,中间用到的几个自定义函数: 第一个函数:checkNotEmptyKs 作用:过滤掉空列簇的数据 第二个函数:forDatas 作用:读取每一条数据,做update后,在转化成写入操作...第三个函数:checkNull 作用:过滤最终结果里面的null数据 上面就是整个处理的逻辑了,需要注意的是对hbase里面的无效数据作过滤,跳过无效数据即可,逻辑是比较简单的,代码量也比较少。
基础 def primitiveType(): Unit = { //scala没有原始类型,都是对象 println("1.toString -> " + 1.toString)..."Hello".intersect("low")) //a.方法(b) == a 方法 b println("1.to(199) -> " + (1 to 199)) //scala...没有受检异常,throw表达式类型为Nothing def handleException: Unit = { //scala没有受检异常 //throw表达式类型为Nothing...at com.hash.learn.scala.Chapter2.exception$.handleException(exception.scala:21) at com.hash.learn.scala.Chapter2....CMain$.main(CMain.scala:25) at com.hash.learn.scala.Chapter2.CMain.main(CMain.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0
温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。...Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1 文章编写目的 前面Fayson介绍了《如何使用Java API...访问HDFS为目录设置配额》,随着开发语言的多样性,也有基于Scala语言进行开发,本篇文章主要介绍如何使用Scala代码访问Kerberos环境的HDFS。...IDE工具通过Maven创建一个Scala工程,这里就不详细介绍Scala的开发环境搭建了。...温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。 推荐关注Hadoop实操,第一时间,分享更多Hadoop干货,欢迎转发和分享。
a.sorted.reverse) //输出:ArrayBuffer(324.0, 123.2, 123.0, 23.0, 12.0, 7.0, 4.0) val b = a.toArray scala.util.Sorting.quickSort...println(a.mkString("")) //输出 println(a.count(_ > 2)) //输出:4 //以上代码相当于
field class Counter { //field必须初始化,为了知道类型 //会自动生成private的getter还有private的set...
Spark sql on hive的一个强大之处就是能够嵌在编程语言内执行,比如在Java或者Scala,Python里面,正是因为这样的特性,使得spark sql开发变得更加有趣。...比如我们想做一个简单的交互式查询,我们可以直接在Linux终端直接执行spark sql查询Hive来分析,也可以开发一个jar来完成特定的任务。...(2)使用Hive按日期分区,生成n个日期分区表,再借助es-Hadoop框架,通过shell封装将n个表的数据批量导入到es里面不同的索引里面 (3)使用scala+Spark SQL读取Hive表按日期分组...方式二: 直接使用Hive,提前将数据构建成多个分区表,然后借助官方的es-hadoop框架,直接将每一个分区表的数据,导入到对应的索引里面,这种方式直接使用大批量的方式导入,性能比方式一好,但由于Hive...生成多个分区表以及导入时还要读取每个分区表的数据涉及的落地IO次数比较多,所以性能一般 方式三: 在scala中使用spark sql操作hive数据,然后分组后取出每一组的数据集合,转化成DataFrame
继承override //覆盖父类的field或者方法一定要加override class BankAccount(val initialBalance: Do...
3NF 分解过程 (伪代码) let Fc be the canonical cover(最小函数依赖集) for F, i = 0 for each FD α → β Fc do if (none
") println("等同于") println("package com.hash.test{") println("package scala{") println...; } } } package com.hash { import com.hash.learn.scala.Chapter7.wc object test8 {...{HashMap => JavaHashMap, _} import scala.collection.mutable.HashMap def execute1 = { val a =...{HashMap => _} import scala.collection.mutable.HashMap def execute = { val a = HashMap(1 ->...2) } //scala程序默认隐式引入: //import java.lang._ //import scala._ //import Predef._ }
接着上篇文章,本篇来看下如何在scala中完成使用spark sql将不同日期的数据导入不同的es索引里面。...首下看下用到的依赖包有哪些: 下面看相关的代码,代码可直接在跑在win上的idea中,使用的是local模式,数据是模拟造的: 分析下,代码执行过程: (1)首先创建了一个SparkSession对象,...注意这是新版本的写法,然后加入了es相关配置 (2)导入了隐式转化的es相关的包 (3)通过Seq+Tuple创建了一个DataFrame对象,并注册成一个表 (4)导入spark sql后,执行了一个...处理组内的Struct结构 (7)将组内的Seq[Row]转换为rdd,最终转化为df (8)执行导入es的方法,按天插入不同的索引里面 (9)结束 需要注意的是必须在执行collect方法后,才能在循环内使用...sparkContext,否则会报错的,在服务端是不能使用sparkContext的,只有在Driver端才可以。
scores = Map("Alice" -> 10, "aaa" -> 9, "bbb" -> 5) //构造一个可变Map[String,Int] val mscores1 = scala.collection.mutable.Map...("Alice" -> 10, "aaa" -> 9, "bbb" -> 5) val mscores2 = scala.collection.mutable.Map(("Alice", 10...), ("aaa", 9), ("bbb", 8)) } def curdMap = { val scores = scala.collection.mutable.Map("Alice...for (v <- mapping.values) yield v println(c)//输出:List(10, 9, 5) } def sortedMap = { //scala
本博客将详细介绍如何使用矩阵分解技术提升推荐效果,包括矩阵分解的基本原理、实现过程、代码部署以及优化方法。通过详细的文字解释和代码示例,帮助读者深入理解矩阵分解技术在推荐系统中的应用。...矩阵分解算法矩阵分解是一种在机器学习和数据挖掘中广泛使用的技术,它通过将原始矩阵分解为若干个低秩矩阵的乘积来揭示数据的潜在结构。这种技术在推荐系统、图像处理和自然语言处理等领域有着广泛的应用。...数据增强使用数据增强技术,如生成对抗网络(GAN)等,增加训练数据的多样性,提高模型的鲁棒性。实际应用案例A. 案例背景假设我们在一个电商平台上使用矩阵分解技术来提升商品推荐效果。...矩阵分解使用SVD或NMF算法对评分矩阵进行分解,生成用户和商品的隐特征矩阵。推荐生成根据分解结果,为用户生成推荐列表,并在平台上进行验证和优化。C....本文详细介绍了矩阵分解的原理、实现过程和优化方法,并结合实际案例展示了如何在推荐系统中应用矩阵分解技术。
开发人员一直非常喜欢Apache Spark,它提供简单但功能强大的API,这些特性的组合使得用最少的代码就可以进行复杂的分析。...相反,使用 RDD 获得相同的性能需要用户手动考虑如何以最佳并行化方式表达计算。 ? 这个新的 Datasets API 的另一个好处是减少了内存使用量。...列按名称自动排列,并保留类型。...Java和Scala统一API DataSets API 的另一个目标是提供可在 Scala 和 Java 中使用的统一接口。...这种统一对于 Java 用户来说是个好消息,因为它确保了他们的API不会落后于 Scala 接口,代码示例可以很容易地在两种语言中使用,而库不再需要处理两种稍微不同的输入类型。
在本文中,我们将演示如何在Scala的集合上使用exists函数,该函数适用于Scala的可变(Mutable)和不可变(Immutable)集合。...示例 1、如何初始化甜甜圈序列(a Sequence of donuts): 下面的代码演示了如何初始化一个包含String类型元素的甜甜圈序列: println("Step 1: How to initialize...exists函数如何检查在序列中是否存在一个指定的元素: 下面的代码展示了如何使用exists函数来查找某个特定元素是否存在于一个序列中——更准确地说,就是使用exists函数来查找甜甜圈序列中存在普通甜甜圈元素...exists函数并通过步骤3的谓词函数查找元素Plain Donut: 下面的代码展示了如何调用exists方法并传递步骤3中的值谓词函数,以查找甜甜圈序列中是否存在普通的甜甜圈元素: println(...exists函数声明谓词def函数: 下面的代码展示了如何使用谓词def函数查找序列中是否存在普通的甜甜圈元素: println("\nStep 5: How to declare a predicate
枚举通常用来定义已知数量的常量,比如月份,星期,季节等等,用过java的人都知道定义枚举的关键字是enum,在scala里面和java有所不同,来看一个完整的例子定义: 上面的这个例子基本涵盖了枚举的所有常用方法...,定义枚举我们继承的是Enumeration抽象类,然后通过内部对象Value来赋值每一个枚举的值,此外里面还定义了几个工具方法,比如判断是否存在某个枚举,是否是工作日,以及打印所有的枚举值,在使用的时候可以直接通过...此外还可以用枚举值做模式匹配: 上面基本就是Scala里面最常见的枚举方法了,当然这种常见的枚举有一些缺点,比如上面的这个模式匹配,如果我仅仅写3个枚举值,它编译时候仍然能通过,但在运行的时候就会报错,...最后这种方式不能枚举一个对象,只能简单的类型,如果想枚举的值,本身就是一个Bean,那么则需要另外的方式,这里就不展开了,有兴趣的朋友可以参考下面的链接: http://pedrorijo.com/blog/scala-enums
元组在Scala语言中是一种十分重要的数据结构,类似数据库里面的一行记录(row),它可以将不同类型的值组合成一个对象,在实际应用中十分广泛。...先来看一个简单的tuple定义: 上面的第二种例子中,可以直接通过name和age来访问单个tuple的元素 例子(1): 一个简单的模式匹配 例子(2): 根据类型匹配 注意上面的代码里面case后面的如果有...变量绑定模式 注意普通的类不能直接使用上面的模式匹配 例子(4): for循环的使用元组进行的模式匹配 结果: 最后我们使用元组,来模拟一个类似下面的SQL的例子: 表(pet)结构: 统计SQL语句...: Scala完整代码如下: 其实,核心代码只有中间的这一部分: 最终结果: 简单解释一下核心部分的代码含义: 首先执行了一个groupBy函数,对元组里面的第一个元素也就是宠物名进行 分组,分组之后...总结: 本篇主要介绍了tuple几种常见的应用场景,通过使用tuple数据结构配合上scala强大的函数方法,我们可以轻松愉快的处理的各种数据集,感兴趣的小伙伴可以自己尝试一下。
configMap 是一个集合,你可以使用 Scala 的 iterable 方法来访问数据。...这些方法以 DataSets 形式返回,因此可以使用 DataSets API 访问或查看数据。在下面代码中,我们访问所有的表和数据库。...快速生成 DataSets 的一种方法是使用 spark.range 方法。在学习如何操作 DataSets API 时,这种方法非常有用。...1.5 使用SparkSession API读取JSON数据 和任何Scala对象一样,你可以使用 spark,SparkSession 对象来访问其公共方法和实例字段。...因此,如果你使用更少的编程结构,你更可能犯的错误更少,并且你的代码可能不那么混乱。
本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。...1、先解决依赖,spark相关的所有包,pom.xml spark-hive是我们进行hive表spark处理的关键。...; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction...; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.hive.HiveContext...; import scala.Tuple2; import java.io.Serializable; import java.util.ArrayList; import java.util.HashMap
GraphX 为整个图计算流程提供了强大的支持,先前已经有若干篇文章先后介绍了GraphX的强大功能,在GraphX官方编程指南中,提供了部分简单易懂的示例代码,其为GraphX的使用提供了一个初步的认识...本文利用一个初始示例代码,结合部分官方文档中的说明,对GraphX的部分功能方法进行了实践,在全部亲自运行通过后,对大部分代码添加了自己的理解和认识,并且在Pregel模型编程部分结合运行结果对其运行流程做了一定梳理...下面,是ben程序代码中使用到的主要程序部分,即定义出一个简单的图结构,并构造一个图Graph[VD,ED],对具体功能的实现均放置在代码的后半部分,主要包括一下几部分: Property Operators...{Level, Logger} import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.apache.spark..." %% "spark-core" % "2.2.0" // libraryDependencies += "org.apache.spark" %% "spark-graphx" % "2.2.0
曾经在一个项目里面用过阿里改造后的JStrom,整体感受就是编程略复杂,在不使用Trident Api的时候是不能保证准确一次的数据处理的,但是能保证不丢数据,但是不保证数据重复,我们在使用期间也出现过几次问题...,bolt或者worker重启时候会导致大量数据重复计算,这个问没法解决,如果想解决就得使用Trident来保证,使用比较繁琐。...checkpoint通常是用来容错有状态的数据处理失败的场景 大多数场景下没有状态的数据或者不重要的数据是不需要激活checkpoint的,当然这会面临丢失少数数据的风险(一些已经消费了,但是没有处理的数据) 如何在代码里面激活...,然后重新编译,新的序列化jar文件,在checkpoint的记录中并不存在,所以就导致了上述错误,如何解决: 也非常简单,删除checkpoint开头的的文件即可,不影响数据本身的checkpoint.../examples/src/main/scala/org/apache/spark/examples/streaming/RecoverableNetworkWordCount.scala
领取专属 10元无门槛券
手把手带您无忧上云