在日常的开发中,遇到需要处理 Null 值的场景还是蛮常见的。比如,查询某个字段包含 Null 值的记录、在展示的时候将 Null 值转为其它值、聚合包含 Null 值的列等。...今天就和大家聊聊在 MySQL 中处理 Null 值时需要注意的点,本文包含以下内容: 查找 Null 值 将 Null 值转为实际值 在排序中对 Null 值的处理 计算非 Null 值的数量 聚合...使用函数 COALESCE() 可将 Null 值转成其它值,将 emp 表中 comm 列的 Null 值转成 0 就可以这么写:COALESCE(comm,0)。...3 处理排序中的 Null 值 如果是使用默认的升序对包含有 Null 值的列做排序,有 Null 值的记录会排在前面,而使用了降序排序,包含了 Null 值的记录才会排在后面。...通常的做法是先将列中的 Null 值转为 0,再做聚合操作。
theme: smartblue 在SQL中,SUM函数是用于计算指定字段的总和的聚合函数。...语法通常如下: SELECT SUM(column_name) AS total_sum FROM table_name; 然而,在使用SUM函数时,对于字段中的NULL值,需要特别注意其处理原则,以确保计算结果的准确性...下面将详细介绍SUM函数在不同情况下对NULL值的处理方式。...where id in (1,2); 查询SQL-存在非NULL的情况 select sum(amount) from balance; 在存在非NULL值的情况下, SUM函数会将所有非NULL值相加...这确保了计算结果的准确性,即使在记录集中存在部分NULL值。 在实际应用中,确保对字段的NULL值进行适当处理,以避免出现意外的计算结果。
今天接到一个群友的需求,有一张表的数据如图 1,他希望能通过 SQL 查询出图 2 的结果。 ? 图 1 原始数据 ?...图 2 输出的结果 先来分析图 1 是怎么变成图 2,图1 中的 tag1、tag2、tag3 三个字段都存在 NULL 值,且NULL值无处不在,而图2 里面的NULL只出现在这几个字段的末尾。...那用 SQL 怎么表示呢? 有一个思路:把每一列去掉 NULL 后单独拎出来作为一张独立的表,这个表只有两个字段,一个是序号,另一个是去 NULL 后的值。...一个比较灵活的做法是对原表的数据做列转行,最后再通过行转列实现图2 的输出。具体的实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按值在原表的列出现的顺序设置了序号,目的是维持同一列中的值的相对顺序不变。
1 . pair 返回两个值 //返回两个值的情况 pair,int> R_R(Mat& img) { int n=img.rows; vector...对象(使用默认构造),它的两个元素分别是T1和T2类型,采用值初始化。...make_pair(v1, v2); // 以v1和v2的值创建一个新的pair对象,其元素类型分别是v1和v2的类型。...p1.first; // 返回对象p1中名为first的公有数据成员 p1.second; //创建与初始化 pair ob; ...T , T, ....> 返回两个及以上 #include //返回多个值的情况, std::tuple > foo
protected void GridView1_RowEditing(object ...
需求描述: 在 chaos(id,v1,v2,v3) 表中获取每个 id 对应的 v1、v2、v3 字段的最大值,v1、v2、v3 同为数值类型。...,再用求得的值和 v3 作比较。...v12 = IF(v1 > v2, v1, v2) v_max = IF(v12 > v3, v12, v3) 如果 chaos 再增加两个数值列 v4、v5,要同时比较这五个字段的值,嵌套的 IF...那么,有没有比较简单且通用的实现呢? 有。先使用 UNION ALL 把每个字段的值合并在一起,再根据 id 分组求得最大值。...使用 CONCAT_WS() 函数将 v1、v2、v3 的值组合成使用逗号分割的字符串; 在递归语句使用 SUBSTRING_INDEX() 根据逗号分解字符串的每个数值; 根据 id 分组求得最大值。
等建完索引,我又发现一个可以优化的地方。在本题中,只需找出散值(即每列的单值)的差异即可,完全没必要把整张表的数据,都拉出来。因为 user_id 肯定会有重复值嘛。...虽然,count 值一样,两列包含的数据,就绝对一样了吗,答案是否定的。假设,user_id, app_user_id 各包含 400万数据。...于是,我又想到了一种方案,那就是求 CRC 的总和。CRC 方法,简单来说,就是求每个 user id 的哈希值,然后求和。若和一致,则说明两列包含了相同的散值。...我之前提过一篇文章讲 CRC,详细的用法在这篇文章里: |SQL中的数据检验, CRC or MD5?...而求两列异值,最快的方法,由上可知,便是Left Join 求 Null, 并且只要有一条数据存在,就足以说明集合的包含关系.
SELECT * FROM dbo.test2 现在我们将Province列值和Company列值互换,代码如下: UPDATE test2 SET Company=Province, Province...=Company 这是第一种列值互换方式!...下面是第二种在部分数据库中有效的互换方式: UPDATE test2 SET Company=Company+Province, Province=Company-Province, Company=Company-Province...; 这里的加减号可能有些数据库不支持,根据不同的DBMS做相应的替换。
而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...scoreWide 考察的问题就是通过SQL语句实现在这两种形态间转换,其中长表转为宽表即行转列,宽表转为长表即列转行。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...,然后将该列命名为course;第二个用反引号包裹起来的课程名实际上是从宽表中引用这一列的取值,然后将其命名为score。...这实际上对应的一个知识点是:在SQL中字符串的引用用单引号(其实双引号也可以),而列字段名称的引用则是用反引号 上述用到了where条件过滤成绩为空值的记录,这实际是由于在原表中存在有空值的情况,如不加以过滤则在本例中最终查询记录有
行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...,还需进一步处理,才能得到想要的结果 SELECT CreateTime, ISNULL(SUM([支付宝]) , 0) AS [支付宝], ISNULL...您可能需要将当前数据库的兼容级别设置为更高的值,以启用此功能。有关存储过程 sp_dbcmptlevel 的信息,请参见帮助。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。
SQL NULL 值 什么是 NULL 值? NULL 值是指字段没有值的情况。如果表中的字段是可选的,那么可以插入新记录或更新记录而不向该字段添加值。此时,该字段将保存为 NULL 值。...以下 SQL 列出了所有具有 "Address" 字段中 NULL 值的客户: SELECT CustomerName, ContactName, Address FROM Customers WHERE...使用 IS NULL 和 IS NOT NULL 运算符可以有效地处理数据库中的空值情况。 SQL UPDATE 语句 UPDATE 语句用于修改表中的现有记录。...UPDATE 语法 UPDATE 表名 SET 列1 = 值1, 列2 = 值2, ... WHERE 条件; 注意:在更新表中的记录时要小心!请注意UPDATE语句中的WHERE子句。...UPDATE语句用于修改数据库表中的记录,可以根据需要更新单个或多个记录,但务必小心使用WHERE子句,以防止意外更新。
需求 在日常的应用中,排查列重复记录是经常遇到的一个问题,但某些需求下,需要我们排查一组列之间是否有重复值的情况。...比如我们有一组题库数据,主要包括题目和选项字段(如单选选择项或多选选择项) ,一个合理的数据存储应该保证这些选项列之间不应该出现重复项目数据,比如选项A不应该和选项B的值重复,选项B不应该和选项C的值重复...SQL语句 首先通过 UNION ALL 将A到D的各列的值给组合成记录集 a,代码如下: select A as item,sortid from exams union all select...在实际的应用中每一个环节我们都难免会出现一些失误,因此不断的根据实际的发生情况总结经验,通过计算来分析,将问题扼杀在摇篮里,以最大保证限度的保证项目运行效果的质量。...至此关于排查多列之间重复值的问题就介绍到这里,感谢您的阅读,希望本文能够对您有所帮助。
pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...print(random_array) print(values_array) 上面两行代码分别打印出前面生成的随机数数组和从 DataFrame 提取出来的值组成的数组。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...,剩余的空间则展示每两个列元素之间的关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。
又如: update xxxx_xxxx set xxx_type= CASE WHEN xxx_type = '0' THEN 'Y...
Bean,得到里面的属性值 * * @author liulinsen * */ public class ReflexObjectUtil { /** * 单个对象的所有键值...==反射==" + map.toString()); return map; } /** * 单个对象的某个键的值 * * @param...if (f.getName().endsWith(key)) { System.out.println("单个对象的某个键的值...} /** * 多个(列表)对象的某个键的值 * * @param object * @param key * @return List 键在列表中对应的所有值 ex:key为上面方法中的mc字段 那么返回的数据就是: [住院患者压疮发生率, * 新生儿产伤发生率, 阴道分娩产妇产伤发生率, 输血反应发生率,
在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan, 3]}) >>> df A B 0 1.0 1.0 1 2.0 NaN 2 NaN 3.0 # 对每一列的...# 默认为0,表示去除包含 了NaN的行 # axis=1,表示去除包含了NaN的列 >>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...axis=0) A B 0 1.0 1.0 >>> df.dropna(axis=1) Empty DataFrame Columns: [] Index: [0, 1, 2] pandas中的大部分运算函数在处理时
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。
于是想到通过default来修改列的默认值: alter table A modify column biz default 'old' comment '业务标识 old-老业务, new-新业务'...找后台运维查生产数据库,发现历史数据的biz字段还是null 原因: 自己在本地mysql数据库试了下,好像的确是default没法修改历史数据为null 的值。这就尴尬了。...看起来mysql和oracle在default的语义上处理不一样,对于oracle,会将历史为null的值刷成default指定的值。...总结 1. mysql和oracle在default的语义上存在区别,如果想修改历史数据的值,建议给一个新的update语句(不管是oracle还是mysql,减少ddl执行的时间) 2....即使指定了default的值,如果insert的时候强制指定字段的值为null,入库还是会为null
1、R中重复值的处理 unique函数作用:把数据结构中,行相同的数据去除。...:unique,用于清洗数据中的重复值。...“dplyr”包中的distinct() 函数更强大: distinct(df,V1,V2) 根据V1和V2两个条件来进行去重 unique()是对整个数据框进行去重,而distinct()可以针对某些列进行去重...2、R中缺失值的处理 缺失值的产生 ①有些信息暂时无法获取 ②有些信息被遗漏或者错误处理了 缺失值的处理方式 ①数据补齐(例如用平均值填充) ②删除对应缺失值(如果数据量少的时候慎用) ③不处理 na.omit...<- na.omit(data) 3、R中空格值的处理 trim函数的作用:用于清除字符型数据前后的空格。
领取专属 10元无门槛券
手把手带您无忧上云