首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R中带函数工具的非负常数解?

在云计算领域,R是一种常用的编程语言和环境,用于数据分析和统计计算。在R中,带函数工具的非负常数解指的是使用特定函数来解决非负常数问题。

非负常数解是指在一定约束条件下,寻找满足这些条件的一组非负数值的解。这种问题在许多实际场景中都会遇到,例如优化问题、线性规划等。R提供了一系列函数工具来处理这类问题,使得求解非负常数解变得更加简单和高效。

下面是一些常用的带函数工具的非负常数解相关的R函数和应用场景:

  1. optim() 函数:用于数值优化问题的函数。它可以通过设置参数来求解非负常数解。
  2. linprog() 函数:用于线性规划问题的函数。它可以在给定线性约束条件下,求解非负常数解。
  3. quadprog() 函数:用于二次规划问题的函数。它可以在给定二次约束条件下,求解非负常数解。
  4. nnls() 函数:用于非负最小二乘问题的函数。它可以通过最小化残差平方和的方式,求解非负常数解。

这些函数可以在不同领域中应用,例如:

  • 优化问题:在最大化或最小化目标函数的同时,满足一些约束条件。比如市场营销中的广告投放优化、资源分配问题等。
  • 统计建模:在建立模型时,需要对参数进行约束,使其为非负常数。比如非负矩阵分解、非负因子分析等。
  • 供应链管理:在库存控制、运输成本优化等方面,需要考虑非负常数解的问题。

对于这些问题,腾讯云的相关产品和服务可提供解决方案,以下是一些推荐的腾讯云产品和产品介绍链接地址:

  1. 弹性容器实例(Elastic Container Instance,ECI):腾讯云提供的容器化部署服务,可用于部署和管理R环境,灵活运行R脚本。详细介绍请参考:弹性容器实例产品介绍
  2. 腾讯云函数(Serverless Cloud Function,SCF):腾讯云提供的事件驱动无服务器计算服务,可用于执行R脚本。详细介绍请参考:腾讯云函数产品介绍
  3. 弹性MapReduce(EMR):腾讯云提供的大数据处理平台,可用于在分布式计算环境下进行数据分析和处理,支持R语言。详细介绍请参考:弹性MapReduce产品介绍

总之,R中带函数工具的非负常数解在云计算领域中具有广泛的应用。腾讯云提供了多种适用于不同场景的产品和服务,可以帮助用户实现高效、可靠的解决方案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【组合数学】不定方程个数问题 ( 多重集r组合数 | 不定方程整数个数 | 生成函数展开式 r 次幂系数 | 给定范围系数 情况下不定方程整数个数 )

不定方程个数 x 取值范围 ( 给定一个范围 ) 不定方程个数 x 取值范围 ( 给定一个范围 并系数 ) 不定方程题目 限制情况 多重集 r 组合数 生成函数计算方法 此处引入 不定方程...a_k \} r- 组合数 ② 不定方程 x_1 + x_2 + \cdots + x_k = r (x_i \leq n_i) 整数个数 ; ③ 生成函数 G(y) = (1+...; 注意不定方程系数情况下 , 生成函数需要使用 y^{系数} 替代 y , 生成函数 y^{系数} 幂从 i 到 j ; ---- 不定方程题目 限制情况...; 分析 : 1>不要直接求解 : 直接列出生成函数 , 就将问题复杂化了 ; 2> 换元转化 : 这里可以将其转为 整数个数来计算 ; 3> 多重集组合数 : 此时就等价于 多重集 S..._1 + y_2 + y_3+y_4 + 11 = 15 y_1 + y_2 + y_3+y_4 = 4 ③ 求 y_1 + y_2 + y_3+y_4 = 4 ( y_i 是自然数 ) , 整数个数

88210

【组合数学】生成函数 ( 使用生成函数求解不定方程个数 )

文章目录 一、使用生成函数求解不定方程个数 1、限制条件 2、系数 参考博客 : 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用生成函数 | 与常数相关 | 与二项式系数相关...】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 ) 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 ) 一、使用生成函数求解不定方程个数 ---- 不定方程个数 :...推导 2 ( 不定方程整数个数推导 ) 上述情况下 , x_i 取值都是没有上限 , 如果 x_i 取值受限 , 如 x_1 取值必须满足 2 \leq x_1 \leq 5...; 2、系数 p_1x_1 + p_2x_2 + \cdots + p_kx_k = r x_i \in N , 整数 , 对 x_i 不设置上限 ; 系数函数整数 , 生成函数基本...cdots})(1+y^{p_2} + y^{2p_2} + y^{3p_2 + \cdots}) \cdots (1+y^{p_k} + y^{2p_k} + y^{3p_k + \cdots}) 该方程整数个数是

68000
  • 【组合数学】生成函数 ( 正整数拆分 | 正整数拆分基本模型 | 有限制条件无序拆分 )

    ( 生成函数应用场景 | 使用生成函数求解递推方程 ) 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数 ) 【组合数学】生成函数...是两类组合问题 ; 如果不允许重复 , 那么这些 x_i 取值 , 只能 取值 0, 1 ; 相当于 限制条件 , 系数 不定方程整数 情况 ; 对应生成函数是 : G(x...) = (1+ y^{a_1}) (1+ y^{a_2}) \cdots (1+ y^{a_n}) 如果 允许重复 , 那么这些 x_i 取值 , 就是 自然数 ; 相当于 系数 不定方程整数...x_i 取值范围 做一下限制 , l_i \leq x_i \leq t_i 这种形式可以使用 不定方程整数个数 生成函数计算 , 是 系数 , 限制条件情况 , 参考 : 组合数学...】生成函数 ( 使用生成函数求解不定方程个数 ) 上述受限制条件下无序拆分 , 就是完整 系数 , 限制条件 不定方程整数 问题 ;

    2.1K00

    【组合数学】生成函数 ( 正整数拆分 | 无序 | 有序 | 允许重复 | 不允许重复 | 无序不重复拆分 | 无序重复拆分 )

    ) 【组合数学】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 ) 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数...是两类组合问题 ; 如果不允许重复 , 那么这些 x_i 取值 , 只能 取值 0, 1 ; 相当于 限制条件 , 系数 不定方程整数 情况 ; 如果 允许重复 , 那么这些...x_i 取值 , 就是 自然数 ; 相当于 系数 不定方程整数 情况 ; 1、无序拆分 不允许重复 讨论 无序拆分 , 不允许重复情况 , 该方式 等价于 限制条件 , 系数 ...不定方程整数 情况 ; a_1 项对应生成函数项 , x_1 取值 0,1 , 则对应生成函数项是 (y^{a_1})^{0} + (y^{a_1})^{1}= 1+ y^{a...N 拆分方案数 ; 2、无序拆分 允许重复 讨论 无序拆分 , 允许重复情况 , 该方式 等价于 不带限制条件 , 系数 不定方程整数 情况 ; a_1 项对应生成函数项 ,

    1.7K00

    【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )

    | 常用生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关 ) 【组合数学】生成函数 ( 线性性质 | 乘积性质 ) 【组合数学】生成函数 ( 移位性质 ) 【组合数学】生成函数...x_2 个 , \cdots , a_n 有 x_n 个 , 那么有如下方程 : a_1x_1 + a_2x_2 + \cdots + a_nx_n = N 这种形式可以使用 不定方程整数个数...生成函数计算 , 是 系数 , 限制条件情况 , 参考 : 组合数学】生成函数 ( 使用生成函数求解不定方程个数 ) 无序拆分情况下 , 拆分后正整数 , 允许重复 和 不允许重复 ,...是两类组合问题 ; 如果不允许重复 , 那么这些 x_i 取值 , 只能 取值 0, 1 ; 相当于 限制条件 , 系数 不定方程整数 情况 ; 对应生成函数是 : G(x... 不定方程整数 情况 ; 对应生成函数是 : G(x) = (1+ y^{a_1}+ y^{2a_1}\cdots) (1+ y^{a_2} + y^{2a_2}\cdots) \cdots

    2.6K00

    【组合数学】生成函数 ( 使用生成函数求解不定方程个数示例 )

    文章目录 一、使用生成函数求解不定方程个数示例 参考博客 : 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关...| 使用生成函数求解递推方程 ) 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数 ) 一、使用生成函数求解不定方程个数示例...x_3 个 , 取值范围是 0 \leq x_3 \leq 2 , 可取值 0,1,2 x_1 + 2x_2 + 4x_3 = r , 其中 r 代表可以称出重量 , 写出上述 ,...限制条件 , 并且系数 不定方程整数 生成函数 : x_1 项 , 限制条件 , 没有系数 , 其 底是 y , 幂取值 0 , 1, 2 , 对应生成函数项是 ( 1 +...y + y^2 ) x_2 项 , 限制条件 , 系数 2 , 其 底是 y^2 , 幂取值 0,1 , 对应生成函数项是 (y^2)^0 + (y^2)^1 = 1+ y^2 x

    42500

    【组合数学】生成函数 ( 使用生成函数求解不定方程个数示例 2 | 扩展到整数 )

    文章目录 一、使用生成函数求解不定方程个数示例 参考博客 : 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关...| 使用生成函数求解递推方程 ) 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数示例...x_3 个 , 取值范围是 -2 \leq x_3 \leq 2 , 可取值 -2, -1, 0,1,2 x_1 + 2x_2 + 4x_3 = r , 其中 r 代表可以称出重量 ,...写出上述 , 限制条件 , 并且系数 不定方程整数 生成函数 : x_1 项 , 限制条件 , 没有系数 , 其 底是 y , 幂取值 0 , 1, 2 , 对应生成函数项是...(y^{-2} + y^{-1} + 1 + y + y^2 ) x_2 项 , 限制条件 , 系数 2 , 其 底是 y^2 , 幂取值 0,1 , 对应生成函数项是 (y^2

    49200

    【组合数学】指数生成函数 ( 证明指数生成函数求解多重集排列 )

    文章目录 一、证明指数生成函数求解多重集排列 参考博客 : 按照顺序看 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用生成函数 | 与常数相关 | 与二项式系数相关 |...( 使用生成函数求解不定方程个数示例 ) 【组合数学】生成函数 ( 使用生成函数求解不定方程个数示例 2 | 扩展到整数 ) 【组合数学】生成函数 ( 正整数拆分 | 无序 | 有序 | 允许重复...是多重集 r 个元素全排列数 选了 r 个元素 , 选择方法数是 m_1 + m_2 + \cdots + m_r = r 整数个数 , 配置完成后 , 再 进行全排列 , 就可以得到...上述求和 , 每个分项都是满足 m_1 + m_2 + \cdots + m_r = r 方程整数 , 每个整数都对应了多重集 S r 组合 ; 组合全排列数是 \cfrac..., 上述求和 a_r = \sum\cfrac{r!}{m_1!m_2!\cdots m_k!} 是 针对所有满足方程一切整数进行求和 ;

    43400

    「如何跳出鞍点?」NeurIPS 2018优化相关论文提前看

    预备知识 本文关注问题可以被形式化定义如下: ? 其中,f 是在一个凸集上平滑函数,x∈R^d,C 是一个封闭凸集,而实数集上 f:R^d 是 C 上一个二次连续函数。...其中,A∈R^d 是一个对称矩阵,b∈R^d 是一个向量,而 c 是一个标量。在这里,假设有一个可行 x*,和一个属于 (0,1] 常数因子 ρ,作者将问题定义如下: ?...正如上面所示定义,Lipschitz 常数 L1 和 L2 分别取决于▽ f(x) 和 ▽ ^2 f(x)。因此,这些常数可能对于一个函数来说很小而对于另一个函数很大。...然后,我们应用算法 1 找到曲率方向来跳出鞍点(如果它是鞍点的话)。 结论 作者研究了目标函数(可能是非凸)三阶平滑在随机优化好处。...作者在他们提出曲率下降算法基础上,进一步提出了一种实用改进运行时复杂度随机优化算法,能够为目标函数是一个有限和形式凸优化问题找到局部最小值。

    74211

    硬核蹭热点系列:油价和巴舍利耶模型

    1 Black-Scholes 模型 原生资产 (商品现货价格) 随机微分方程(SDE)如下: 其中 S(t) = 资产在时点 t r= 常数型瞬时利率 q = 常数型净便利收益率 (net convenience...yield) σ = 常数型瞬时波动率 W(t) = 布朗运动 对于消费型商品(投资型商品如黄金或白银),你持有现货会给你带来便利(convenience yield),但也会有存储费用(cost...BS 推导见得太多了,因此简叙一下推导步骤: 用伊藤公式 SDE 得到 S(T) 将 S(T) 带入期权支付函数求积分 首先根据伊藤公式 S(T) 再求积分得到期权定价公式,看涨看跌期权用 ω...yield) σ = 常数型波动率 W(t) = 布朗运动 上面大多参数含义和 BS 模型一样, 只有 σ 不再是瞬时波动率,而是波动率了,注意 SDE 扩散项(diffusion term)只有...Bachelier 推导虽然很早就有了,但可能大家没怎么关注,因此详叙一下推导步骤: 用通用线性 SDE 得到 S(T) 将 S(T) 带入期权支付函数求积分 首先通用线性 SDE S(T

    1.4K10

    2016-ICLR-DENSITY MODELING OF IMAGES USING A GENERALIZED NORMALIZATION TRANSFORMATION

    整个非线性变换架构为:数据首先经过线性变换,然后通过合并活动度量对每个分量进行归一化(这个活动度量是对整流和取幂分量加权和一个常数进行取幂计算)。作者利用熵度量对整个非线性变换进行优化。...而 ICA 模型和 RG 模型都只是在 ddd 取值较大或较小时才表现出很好去相关效果。 作者说在这里互信息通过一个加性常数和式 (2) 表示熵相关。...不是很理解…… 根据互信息定义: image.png 多出来 和式 (2) 常数关系吗?...这里作者考虑加性高斯噪声,并使用经验贝叶斯公式由估计噪声数据分布 推导得到原图像数据分布,经验贝叶斯公式如下: image.png 其中, 是噪声图像数据, 是 方差,...T. and Nowak, R. D.

    1.6K40

    用一张图理解SVM脉络

    这个问题求解普遍使用是SMO算法,这是一种分治法,它每次选择两个变量进行优化,这两个变量优化问题是一个等式和不等式约束条件二次函数极值问题,可以求出公式,并且这个问题也是凸优化问题。...在微积分我们学习过,等式约束最优化问题可以用拉格朗日乘数法求解,对于既有等式约束又有不等式约束问题,也有类似的条件定义函数最优-这就是KKT条件。对于如下优化问题: ?...接下来将上面的问题转化为如下所谓原问题形式,其最优为: ? 等式右边含义是先固定住变量x,将其看成常数,让拉格朗日函数对乘子变量 ? 求最大值。消掉这两组变量之后,再对变量x求最小值。...上面第一种情况对应是自由变量即支持向量,第二种情况对应是支持向量,第三种情况对应是违反不等式约束样本。在后面的求解算法,会应用此条件来选择优化变量。...假设选取两个分量为 ? ,其他分量都固定即当成常数。由于 ? 以及 ? 对这两个变量目标函数可以写成: ? 其中c是一个常数。前面的二次项很容易计算出来,一次项要复杂一些,其中: ? ?

    2.8K10

    【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 )

    文章目录 一、使用生成函数求解多重集 r 组合数 二、使用生成函数求解多重集 r 组合数 示例 参考博客 : 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用生成函数 |...与常数相关 | 与二项式系数相关 | 与多项式系数相关 ) 【组合数学】生成函数 ( 线性性质 | 乘积性质 ) 【组合数学】生成函数 ( 移位性质 ) 【组合数学】生成函数 ( 求和性质 ) 【组合数学..., 是 不定方程 x_1 + x_2 + \cdots + x_k = r 整数 , 前提是 x_i \leq n_i , 每个元素所取个数 x_i , 不能超过其重复度 n_i..., 全排列 k^r , \ \ r\leq n_i 可重复元素 , 无序选取 , 对应 多重集组合 ; N= C(k + r - 1, r) 上述 多重集 r 组合数 C(k + r...是 y^{r} , 即 y^{x_1}y^{x_2}\cdots y^{x_k} = y^{r} , 相当于指数 x_1 + x_2 + \cdots + x_k = r , 也就是不定方程整数

    1K00

    深度 | SGD过程噪声如何帮助避免局部极小值和鞍点?

    凸环境转变催生了对于像动态系统理论、随机微分方程等框架使用,这为在优化解空间中考虑长期动态和短期随机性提供了模型。 在这里,我将讨论在梯度下降世界首先出现一个麻烦:噪声。...mini-batch 噪声协方差结构 介绍一下我们问题设定背景。假设我想要最小化一个包含 N 个样本有限数据集上损失函数 f:R^n→R。...在许多优化问题中,我们根本目标是最大化一些参数配置似然。因此,我们损失是一个对数似然。对于分类问题来说,这就是一个交叉熵。在这个例子,第一项 ?...但是 KL 散度是一个与我们想要最小化交叉熵损失(对数似然)相差甚远常数因子。 因此,mini-batch 噪声协方差与我们损失 Hessian 矩阵渐进相关。...我认为正确方法应该是想出一种有效方法来模拟小批量噪声各向异性,这种方法从学习率和批处理大小组合耦」出来。

    1.5K50

    文心一言 VS 讯飞星火 VS chatgpt (228)-- 算法导论16.4 5题

    • 权重函数定义:权重函数是给每个元素一个权重,独立子集权重是该子集中所有元素权重和。通过转换方法,我们确保了: • 元素间独立性关系保持不变。...调整独立子集集合:如果原集合I包含所有权重子集,则在转换后,集合I需要调整为包含所有权重子集。 3....为了将这个问题转换为标准加权拟阵问题,我们需要确保我们权重函数满足以下条件: 1. 性:权重函数w是定义在E上实值函数。 2....转换:如果权重函数w不是非,我们可以通过减去一个常数来使所有权重。这个常数是w最小值绝对值。这样,我们不会改变权重之间相对大小,也不会改变最优。 2....通过上述转换,我们可以确保新权重函数w'是非,并且与拟阵M兼容。因此,我们得到了一个标准加权拟阵问题。 为了证明转换正确性,我们需要验证转换后权重函数w'保持了原问题最优

    11420

    运筹学教学|十分钟快速掌握单纯形法(附C++代码及算例)

    因此,为了便于讨论,在应用单纯形法时,规定线性规划问题必须有一个标准形式,主要包括以下三个特征: 1)目标函数统一为求极大值(或极小值); 2)所有约束条件(除变量条件外)必须都是等式,约束条件右端常数项...可行与 最优 若找到(x_1, x_2 ,..., x_n)值满足所有约束条件,且每个变量,则(x_1, x_2 ,..., x_n)称为线性规划问题可行。...最优性检验 若在当前表目标函数对应,所有基变量系数正,则可判断得到最优,可停止计算。否则转入下一步; 3....挑选目标函数对应行系数最大基变量作为进基变量。假设x_k为进基变量,按θ规则[1]计算,可确定x_l为出基变量,转下一步; 5....在单纯形表,我们发现基变量x系数大于零,因此可以通过增加这些x值,来使目标函数增加。 上表c_2最大,因此我们选择x_2作为新基变量。按照θ规则,x_7出基。

    4K60

    可扩展机器学习——梯度下降(Gradient Descent)

    image.png 3、凸优化与凸优化 简单来讲,凸优化问题是指只存在一个最优优化问题,即任何一个局部最优即为全局最优,可以由下图表示: ?...凸优化是指在空间中存在多个局部最优,而全局最优是其中某一个局部最优,可以由下图表示: ?...若当前点斜率(梯度)为正,则选择方向向左,若当前斜率(梯度)为,则选择梯度方向是向右。 斜率即为下降方向。 对于上述一维情况,有下述更新规则: ?...对于二维情况,如下图所示: ? 其中,函数值由黑白色表示,黑色表示更大值,箭头表示是梯度。 梯度是最快下降方向。 此时更新规则如下: ?...在实践过程,人们发现了不同步长形式,一种通用步长设置方法如下: image.png 其中,α 是一个常数,n表示是训练数据特征个数,ii表示是迭代代数。

    1.2K70

    《算法导论》动态规划笔记(1)

    时间为n指数函数,T(n)=2^n 使用动态规划求解 刚才看到用递归方法求解太费时间了,然后看看用动态规划怎么求解。动态规划对每个子问题只求解一次,并将结果保存下来。...动态规划有2等价求解方法,先看第一种 1....备忘自顶向下法 此方法扔按照自然递归形式编写过程,但过程会保存每个子问题,通常保存在一个数组或者散列表,(散列表后面再说)当需要一个子问题时,过程首先检查是否已经保存过此。...下面是备忘自顶向上CUT-ROD过程伪代码 # 主过程 MEMOIZED-CUT-ROD(p,n) let r[0..n] be a new array for i=0 to n...# 令新建数组r值都为无穷, # 然后调用辅助过程MEMOIZED-CUT-ROD-AUX r[i] = 无穷 return MEMOIZED-CUT-ROD-AUX

    826100

    学界 | 全局最优?为什么SGD能令神经网络损失降到零

    选自 arXiv 机器之心编译 参与:思源 昨日,reddit 上一篇帖子引发热议,该帖介绍了一篇关于梯度下降对过参数化神经网络影响论文,该论文只用单个非常宽隐藏层,并证明了在一定条件下神经网络能收敛到凸优化全局最优...一个经验观察是,即使优化目标函数是非凸和平滑,随机初始化一阶方法(如随机梯度下降)仍然可以找到全局最小值(训练损失接近为零)。令人惊讶是,这个特性与标签无关。...然而,这并不能说明为什么由随机初始化一阶方法找到神经网络能够适应所有数据。目标函数是非凸和平滑,这使得传统凸优化分析技术在这种情况下没有用。...在后一部分离散型时间分析,我们将进一步修正这一部分证明,并为正下降步长梯度下降设定一个定量边界。 形式化而言,我们考虑常微分方程,公式如下所示: ? 其中 r 属于 1 到 m。...定理 4.1 表明,即使目标函数是非平滑和,具有正常数步长梯度下降仍然具有线性收敛速度。我们对最小特征值和隐藏节点数假设与梯度流定理完全相同。

    64720

    机器学习与深度学习习题集答案-2

    各类样本均值之差可以写成 ? 如果定义类间散布矩阵 ? 则类间差异可以写成 ? 要优化目标函数可以写为 ? 这个最优化问题不唯一,如果 ? 是最优,将它乘上一个零系数k之后, ?...还是最优。可以加上一个约束条件消掉冗余,同时简化问题。为w加上如下约束 ? 上面的最优化问题转化为等式约束极大值问题: ? 用拉格朗日乘数法求解。构造拉格朗日乘子函数: ?...先固定住拉格朗日乘子α,调整w和b,使得拉格朗日函数取极小值。把α看成常数,对w和b求偏导数并令它们为0,得到如下方程组 ? 从而得 ? 将上面两个代入拉格朗日函数消掉w和b ?...目标函数前半部分是凸函数,后半部分是线性函数显然也是凸函数,两个凸函数线性组合还是凸函数。上面优化问题不等式约束都是线性约束,构成可行域显然是凸集。因此该优化问题是凸优化问题。...得 ? 将上面的代入拉格朗日函数,得到关于α和β函数 ? 接下来调整乘子变量求解如下最大化问题 ? 由于 ? 并且 ? ,因此有 ? 。这等价与如下最优化问题 ?

    1.6K10
    领券