如果使用均方差作为损失函数 所以,如果当前模型的输出接近0或者1时,σ′(z)就会非常小,接近0,使得求得的梯度很小,损失函数收敛的很慢。...如果使用交叉熵作为损失函数 原文链接:为什么LR模型损失函数使用交叉熵不用均方差? 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/153152.html原文链接:https://javaforall.cn
目标就是让损失函数最小化,损失越小的模型越好。交叉熵损失函数,就是众多损失函数中重要一员,它主要用于对分类模型的优化。...为了理解交叉熵损失函数,以及为什么同时用Softmax作为激活函数,特别撰写本文。 下面我们使用一个图像分类的示例,这个示例中包括狗、猫、马和豹。 ?...熵 随机变量 的熵定义: 关于熵的更多内容,请参阅《机器学习数学基础》(2021年5月,电子工业出版社出版)。 交叉熵损失函数 交叉熵损失函数,也称为对数损失或者logistic损失。...在训练模型的时候,使用交叉熵损失函数,目的是最小化损失,即损失越小的模型越好。最理想的就是交叉熵损失函数为 。...二分类交叉熵损失函数 对于二分类问题,由于分类结果服从伯努利分布(参阅《机器学习数学基础》),所以二分类交叉熵损失函数定义为: ★定义 其中, 是某类别的真实值,取值为 或 ;
交叉熵(Cross Entropy) 是Shannon信息论中一个重要概念, 主要用于度量两个概率分布间的差异性信息。 语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。...将交叉熵引入计算语言学消岐领域,采用语句的真实语义作为交叉熵的训练集的先验信息,将机器翻译的语义作为测试集后验信息。计算两者的交叉熵,并以交叉熵指导对歧义的辨识和消除。...交叉熵不失为计算语言学消岐的一种较为有效的工具。 交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。...交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。...P(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。为了保证有效性,这里约定当p(x)→0时,有p(x)logp(x)→0 。
参考文献 [1]pytorch的nn.MSELoss损失函数 [2]状态估计的基本概念(3)最小均方估计和最小均方误差估计 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
交叉熵损失函数 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。...以前做一些分类问题的时候,经常会用到,最近老师让看下交叉熵损失函数,今天就来看看他是何方神圣。 信息论 交叉熵损失函数是基于信息论提出来的。...信息论的重要特征是信息熵(entropy)的概念,他是事件发生不确定性的度量单位,信息熵越大表示不确定性越高,反之不确定性越低。...image.png 相对熵(KL散度) 相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (...image.png 交叉熵 image.png 参考资料: 【1】机器学习—蔡自兴 【2】https://blog.csdn.net/tsyccnh/article/details/79163834
Cross Entropy Error Function 交叉熵损失函数 一,信息量 信息量: 任何事件都会承载着一定的信息量,包括已经发生的事件和未发生的事件,只是它们承载的信息量会有所不同。...假设x是一个离散型随机变量,其取值集合为X,概率分布函数为p(x),则定义事件x=x_0的信息量为:I(x_0)=-\log(p(x_0)) 二,熵 熵是表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望...)\log(p(x_i))-\sum_{i=1}^np(x_i)\log(q(x_i)) 根据熵的定义,前半部分是p(x)的熵H(x)=-\sum_{i=1}^np(x_i)\log(p(x_i)),而后半部分则是交叉熵...五,交叉熵损失函数 在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,而在分类问题中常常使用交叉熵作为loss函数,特别是在神经网络作分类问题时,并且由于交叉熵涉及到计算每个类别的概率...,所以交叉熵几乎每次都和sigmoid或者softmax函数一起出现。
image.png image.png image.png image.png image.png
data,这一部分对每个特定数据集来说是一个定值,为了简化去掉该部分我们最后得到了交叉熵。...也就是说,虽然最小化的是交叉熵,但其实我们的目的是最大似然,因为最大似然有以下性质: 最大似然有两个非常好的统计性质: 样本数量趋于无穷大时,模型收敛的概率会随着样本数m的增大而增大。...另外,在梯度计算层面上,交叉熵对参数的偏导不含对sigmoid函数的求导,而均方误差(MSE)等其他则含有sigmoid函数的偏导项。...大家知道sigmoid的值很小或者很大时梯度几乎为零,这会使得梯度下降算法无法取得有效进展,交叉熵则避免了这一问题。...综上所述,最小化交叉熵能得到拥有一致性和统计高效性的最大似然,而且在计算上也比其他损失函数要适合优化算法,因此我们通常选择交叉熵作为损失函数。
除了数学表达式相似以外,完全可以将这里的熵和其热力学概念联系起来....在对符号进行编码时,如果假设了其他的概率 而非真实概率 ,则对每个符号所需的编码的长度就会更大.这正是交叉熵所发挥作用的时候....例如,ASCII会对每个符号赋予相同的概率值 .下面计算采用ASCII编码时单词"HELLO"的交叉熵: 从而采用ASCII编码时,每个字符需要8个位,这与预期完全吻合....作为一个损失函数假设p为所期望的输出和概率分布("编码"),其中实际值 有100%,而其他任何值为0,将q作为由模型计算得到的输出,请牢记,sigmoid函数的输出是一个概率值....有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的
作者 | Vijendra Singh 编译 | VK 来源 | Medium 交叉熵损失是深度学习中应用最广泛的损失函数之一,这个强大的损失函数是建立在交叉熵概念上的。...当我开始使用这个损失函数时,我很难理解它背后的直觉。在google了不同材料后,我能够得到一个令人满意的理解,我想在这篇文章中分享它。...为了全面理解,我们需要按照以下顺序理解概念:自信息, 熵,交叉熵和交叉熵损失 自信息 "你对结果感到惊讶的程度" 一个低概率的结果与一个高概率的结果相比,低概率的结果带来的信息量更大。...交叉熵损失 紫色线代表蓝色曲线下的面积,估计概率分布(橙色线),实际概率分布(红色线) 在上面我提到的图中,你会注意到,随着估计的概率分布偏离实际/期望的概率分布,交叉熵增加,反之亦然。...因此,我们得到交叉熵损失的公式为: 在只有两个类的二分类问题的情况下,我们将其命名为二分类交叉熵损失,以上公式变为:
作者 | Vijendra Singh 编译 | VK 来源 |Medium 交叉熵损失是深度学习中应用最广泛的损失函数之一,这个强大的损失函数是建立在交叉熵概念上的。...当我开始使用这个损失函数时,我很难理解它背后的直觉。在google了不同材料后,我能够得到一个令人满意的理解,我想在这篇文章中分享它。...为了全面理解,我们需要按照以下顺序理解概念:自信息, 熵,交叉熵和交叉熵损失。 自信息 "你对结果感到惊讶的程度" 一个低概率的结果与一个高概率的结果相比,低概率的结果带来的信息量更大。...交叉熵损失 紫色线代表蓝色曲线下的面积,估计概率分布(橙色线),实际概率分布(红色线) 在上面我提到的图中,你会注意到,随着估计的概率分布偏离实际/期望的概率分布,交叉熵增加,反之亦然。...因此,我们得到交叉熵损失的公式为: 在只有两个类的二分类问题的情况下,我们将其命名为二分类交叉熵损失,以上公式变为:
好了,有了模型之后,我们需要通过定义损失函数来判断模型在样本上的表现了,那么我们可以定义哪些损失函数呢?...Classification Error(分类错误率) 最为直接的损失函数定义为: 模型1: 模型2: 我们知道,模型1和模型2虽然都是预测错了1个,但是相对来说模型2表现得更好,损失函数值照理来说应该更小...主要原因是在分类问题中,使用sigmoid/softmx得到概率,配合MSE损失函数时,采用梯度下降法进行学习时,会出现模型一开始训练时,学习速率非常慢的情况(MSE损失函数)。...有了上面的直观分析,我们可以清楚的看到,对于分类问题的损失函数来说,分类错误率和均方误差损失都不是很好的损失函数,下面我们来看一下交叉熵损失函数的表现情况。...交叉熵损失函数 现在我们利用这个表达式计算上面例子中的损失函数值: 模型1: 对所有样本的loss求平均: 模型2: 对所有样本的loss求平均: 可以发现,交叉熵损失函数可以捕捉到模型1和模型2预测效果的差异
在学习机器学习的时候,我们会看到两个长的不一样的交叉熵损失函数。 假设我们现在有一个样本 {x,t},这两种损失函数分别是。 [图片] , t_j说明样本的ground-truth是第j类。...[图片] 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样呢? 因为这两个交叉熵损失函数对应不同的最后一层的输出。...首先来看信息论中交叉熵的定义: [图片] 交叉熵是用来描述两个分布的距离的,神经网络训练的目的就是使 g(x)g(x) 逼近 p(x)p(x)。 现在来看softmax作为最后一层的情况。...现在应该将最后一层的每个神经元看作一个分布,对应的 target 属于二项分布(target的值代表是这个类的概率),那么第 i 个神经元交叉熵为: [图片] ,所以最后一层总的交叉熵损失函数是 [图片...] 解释完了,最后总结一下:这两个长的不一样的交叉熵损失函数实际上是对应的不同的输出层。
(y_ - y))) 把所有的损失求和6、交叉熵 表征两个概率分布之间的距离 交叉熵越大,两个概率分布越远;交叉熵越小,两个概率分布越近。...y_:标准答案的概率分布; y:预测结果的概率分布; 通过交叉熵的值,可以判断 哪个预测结果 与标准答案 最接近。...n个输出(y1,y1, ..., yn)都在0-1之间,且它们的和为1,引入了softmax()函数当n分类的n个输出(y1, y2, ..., yn)通过softmax()函数,便满足了y概率分布要求...对于n分类,有y1, y1, ..., yn n个输出。这n个输出 经过softmax()函数后,会符合概率分布。)...(输出 经过softmax()函数 满足概率分布之后,再与标准答案 求交叉熵)# 输出 经过softmax()函数 满足概率分布之后,再与标准答案 求交叉熵ce = tf.nn.sparse_softmax_cross_entropy_with_logits
本文链接:https://blog.csdn.net/chaipp0607/article/details/101946040 Cross Entropy是分类问题中常见的一种损失函数,我们在之前的文章提到过二值交叉熵的证明和交叉熵的作用...,下面解释一下交叉熵损失的求导。...{f_{i}}}{\sum_{k=0}^{C-1} e^{f_{k}}}pi=∑k=0C−1efkefi 类别的实际标签记为y0...yiy_{0}...y_{i}y0...yi,那么交叉熵损失...那么LLL对第iii个神经元的输出fif_{i}fi求偏导∂L∂fi\frac{\partial L}{\partial f_{i}}∂fi∂L: 根据复合函数求导原则: ∂L∂fi=∑j=0C...\partial p_{j}}{\partial f_{i}}∂fi∂L=j=0∑C−1∂pj∂Lj∂fi∂pj 在这里需要说明,在softmax中我们使用了下标iii和kkk,在交叉熵中使用了下标
Cross Entropy Error Function 二分类 L = \frac{1}{N}\sum_iL_i = \frac{1}{N}\sum_i-[y_ilog(p_i)]+(1-y_i)log...(1-log(p_i))] 多分类 L=\frac{1}{N}\sum_iL_i=\frac{1}{N}\sum_i -\sum_{c=1}^m y_{ic} log(p_{ic}) 交叉熵损失函数及其与熵和...KL散度的关系 最小化交叉熵等价于最小化KL散度等价于最大化对数似然估计。
而损失函数就是衡量 和 之间差距的指标,通过损失函数指明模型优化的方向。 本文重点介绍深度学习常用的交叉熵损失函数。 在了解交叉熵之前还需要先了解一些信息轮里的基本概念。...所以上式其实就是交叉熵的公式~ 上文介绍交叉熵时,我们交叉熵常用来做为loss函数,期望其越小越好。...最大似然函数我们期望其越大越好,但是这里负对数似然函数我们有取反操作,其形式和交叉熵一致,所以负对数似然函数和交叉熵一样,可以作为损失函数,期望其越小越好。...交叉熵损失函数 交叉熵损失函数(Cross Entropy Loss)是分类问题中最常用的损失函数。 对于二分类我们通常使用sigmoid函数将模型输出转换为概率(0,1)区间内。...sogmoid: sigmoid_cross_entropy_with_logits的计算过程: 对输出logits进行sigmoid计算,预测值 计算交叉熵 对于多分类通常使用
PyTorch是一个流行的深度学习框架,提供了多种多分类损失函数的实现。本文将带您了解PyTorch中一些常用的多分类损失函数及其用法。1....交叉熵损失函数(CrossEntropyLoss)交叉熵损失函数是最常用的多分类损失函数之一,适用于将模型输出映射为概率分布的情况。...在PyTorch中,通过使用torch.nn.CrossEntropyLoss类来实现交叉熵损失函数。...接下来的梯度计算、梯度清零、反向传播和权重更新与交叉熵损失函数的示例代码相似。3. 其他多分类损失函数除了交叉熵损失函数和负对数似然损失函数,PyTorch还提供了其他许多多分类损失函数的实现。...在深度学习中,常用的多分类损失函数包括交叉熵损失函数、负对数似然损失函数等。 交叉熵损失函数(Cross Entropy Loss)是多分类问题中最常用的损失函数之一。
交叉熵损失函数的数学原理 我们知道,在二分类问题模型:例如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,真实样本的标签为 [0,1],分别表示负类和正类...交叉熵损失函数的直观理解 可能会有读者说,我已经知道了交叉熵损失函数的推导过程。但是能不能从更直观的角度去理解这个表达式呢?而不是仅仅记住这个公式。好问题!...同样,预测输出越接近真实样本标签 0,损失函数 L 越小;预测函数越接近 1,L 越大。函数的变化趋势也完全符合实际需要的情况。 从上面两种图,可以帮助我们对交叉熵损失函数有更直观的理解。...这是由 log 函数本身的特性所决定的。这样的好处是模型会倾向于让预测输出更接近真实样本标签 y。 3. 交叉熵损失函数的其它形式 什么?交叉熵损失函数还有其它形式?没错!...同样,s 越接近真实样本标签 -1,损失函数 L 越小;s 越接近 +1,L 越大。 4. 总结 本文主要介绍了交叉熵损失函数的数学原理和推导过程,也从不同角度介绍了交叉熵损失函数的两种形式。
领取专属 10元无门槛券
手把手带您无忧上云