大家好,今天介绍自然语言处理中经典的隐马尔科夫模型(HMM)。HMM早期在语音识别、分词等序列标注问题中有着广泛的应用。...即X在tn时刻的状态只与其前一时刻时状态的值有关,则称该随机变量的变化过程是马尔科夫随机过程,随机变量满足马尔科夫性。 2 隐马尔科夫模型(HMM) 如图所示为马尔科夫模型的图结构 ?...基于此图结构可知,HMM模型满足如下的性质: (1) 它基于观测变量来推测未知变量; (2) 状态序列满足马尔科夫性; (3) 观测序列变量X在t时刻的状态仅由t时刻隐藏状态yt决定。...所以这一节中介绍其在分词应用中的实践,通过完整实际的思路介绍和代码讲解,相信各位读者能够对HMM模型有一个准确的认识。...总结 HMM的基本原理和其在分词中的应用就讲到这里了,从上述分析可以看出,HMM时非常适合用于序列标注问题的。但是HMM模型引入了马尔科夫假设,即T时刻的状态仅仅与前一时刻的状态相关。
模型的设定如下: 隐藏状态数目:6 输入变量:当日对数收益率,五日对数收益率,当日对数高低价差(其他备选因素成交量、成交额等大家可以自行尝试) 混合高斯分布成分数目:1(为了简便,假定对数收益率服从单一高斯分布...) HMM模型的算法使用hmmlearn模块。...简单介绍一下函数的各个参数意思。 ? ? ? 以上。我们看到了六个状态的HMM模型输出的市场状态序列。...需要注意的是:HMM模型只是能分离出不同的状态,具体对每个状态赋予现实的市场意义,是需要人为来辨别和观察的。 下面我们来用简单的timming策略来识别6种latent_state所带来的效果。...因为HMM模型对输入的多维度观测变量进行处理后,只负责分出几个类别,而并不会定义出每种类别的实际含义。所以我们从图形中做出上述的判断。 四、择时策略 我们根据模拟出来的隐藏状态,来进行择时。 1.
图中最左侧使用线性回归 来对一个数据集进行拟合,这个模型无法捕捉到数据集中的曲率信息,有欠拟合(Underfitting)的可能。...中间的图增加了一个二次项,用 来拟合,相当于增加了一维特征,我们对特征补充得越多,拟合效果就越好。不过,增加太多特征也会造成不良后果,最右边的图就是使用了五次多项式 来进行拟合。...最后这个模型可以精确地拟合每个点,但是它并没有诠释数据的曲率趋势,这时发生了过拟合(Overfitting)。或者说,中间那个模型泛化能力较好,左右两侧的模型泛化能力一般。...机器学习领域的一大挑战就是如何处理欠拟合和过拟合问题。我们必须考虑: 降低模型在训练集上的误差。 缩小训练集误差和测试集误差之间的差距。...通过调整模型的容量(Capacity),我们可以控制模型是否偏向于过拟合或欠拟合。模型的容量是指其拟合各种函数的能力,容量低的模型很难拟合训练集,容量高的模型可能会过拟合。
在机器学习和深度学习的模型训练中,过拟合和欠拟合是训练模型时常见的两种问题,它们会严重影响模型的泛化能力。一个好的训练模型,既要避免欠拟合,也要避免过拟合。...防止过拟合的方法假设我们正在开发一个图像分类模型,用于识别手写数字(例如MNIST数据集)。在这个过程中,我们可能会遇到过拟合的问题。...浪费资源:虽然欠拟合模型通常比过拟合模型简单得多,但如果投入了大量的时间和计算资源用于训练这样一个模型,最终却得不到有效的结果,这也是一种资源浪费。...以下是几种常见的导致欠拟合的原因:模型过于简单:当使用的模型复杂度不足以捕捉数据中的模式时,就会发生欠拟合。例如,尝试用线性回归模型去拟合一个本质上非线性的关系。...这种方法适用于多种场景下的机器学习任务,尤其是在特征选择和模型设计已经相对合理的情况下,进一步优化训练过程可以显著提升模型的性能。
也许你会得到一个不错的模型技术得分,但了解模型是较好的拟合,还是欠拟合/过拟合,以及模型在不同的配置条件下能否实现更好的性能是非常重要的。...在本教程中,你将发现如何诊断 LSTM 模型在序列预测问题上的拟合度。完成教程之后,你将了解: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、较好拟合和过拟合的模型。...诊断图 LSTM 模型的训练历史可用于诊断模型行为。...良好拟合实例 良好拟合的模型就是模型的性能在训练集和验证集上都比较好。 这可以通过训练损失和验证损失都下降并且稳定在同一个点进行诊断。 下面的小例子描述的就是一个良好拟合的 LSTM 模型。...具体而言,你学到了: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、良好拟合和过拟合的模型。 如何通过平均多次模型运行来开发更鲁棒的诊断方法。 ?
在算法中使用正则化的目的是防止模型出现过拟合。一提到正则化,很多同学可能马上会想到常用的L1范数和L2范数,在汇总之前,我们先看下LP范数是什么?...以L2范数作为正则项可以得到稠密解,即每个特征对应的参数ww都很小,接近于0但是不为0;此外,L2范数作为正则化项,可以防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。...Dropout可以实例化的表示为下图: 我们可以从两个方面去直观地理解Dropout的正则化效果: 在Dropout每一轮训练过程中随机丢失神经元的操作相当于多个DNNs进行取平均,因此用于预测时具有...Batch Normalization 批规范化(Batch Normalization)严格意义上讲属于归一化手段,主要用于加速网络的收敛,但也具有一定程度的正则化效果。...提升模型精度:归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。 加速模型收敛:标准化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。
英特尔最近发布了 Neural Compressor,这是一个用于模型压缩的开源 Python 包。该库可应用于 CPU 或 GPU 上的深度学习部署,以减小模型大小并加快推理速度。...此外它为著名的网络压缩技术提供统一的用户界面,包括跨各种深度学习框架的量化、修剪和知识蒸馏。该工具的自动精度驱动调整技术可用于生成最佳量化模型。...此外,它允许知识蒸馏,以便可以将来自教师模型的知识转移到学生模型中。它实现了几种权重剪枝方法,以使用预定的稀疏目标生成剪枝模型。...英特尔神经压缩器通过提供用于量化、自动混合精度和精度感知调整的复杂配方来扩展 PyTorch 量化。它接受 PyTorch 模型作为输入,并生成一个理想模型作为响应。...该团队一直致力于通过包含更多压缩公式并融合这些方法来创建理想模型来改进该工具。此外,该团队还征求开源社区的意见,并鼓励人们为 Python 包做出贡献。可以在此处访问该库的 Github 存储库。
NewBeeNLP·干货 作者:Poll 其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的的一种手段或操作。在算法中使用正则化的目的是防止模型出现过拟合。...以L2范数作为正则项可以得到稠密解,即每个特征对应的参数ww都很小,接近于0但是不为0;此外,L2范数作为正则化项,可以防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。...Dropout可以实例化的表示为下图: 我们可以从两个方面去直观地理解Dropout的正则化效果: 在Dropout每一轮训练过程中随机丢失神经元的操作相当于多个DNNs进行取平均,因此用于预测时具有...Batch Normalization 批规范化(Batch Normalization)严格意义上讲属于归一化手段,主要用于加速网络的收敛,但也具有一定程度的正则化效果。...提升模型精度:归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。 加速模型收敛:标准化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。如下图所示:
而HMM模型是比较经典的解决序列问题的机器学习模型,所以,在DM的动作决策问题上首先尝试了HMM模型。本文将结合实际案例从理论推导、模型构建、实验分析三个方面对HMM模型在DM中的应用进行详细解析。...2.HMM模型简介 2.1 何为HMM模型 隐马尔科夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程,其目的是从可观察的序列结果来确定隐含的参数...:转移概率(隐状态到隐状态的转移概率) emit_p:发射概率(隐状态到观测状态的发射概率) 即HMM模型的参数为:π 2.2 HMM模型可以解决什么问题 HMM模型可以解决3种问题: 已知参数(?...:hmmlearn,在python的环境下用命令行“pip install hmmlearn”即可完成。...结果分析 分析数据中客户说的话所处的状态的分布为: ? 将保存下来的模型分别用于优秀经纪人和一般经纪人对话中客户说话状态的预测,分析相同状态下,优秀经纪人和一般经纪人给出的动作的差异。
隐马尔可夫模型与序列标注 4.1 序列标注问题 4.2 隐马尔可夫模型 4.3 隐马尔可夫模型的训练 4.4 **隐马尔可夫模型的预测** 4.5 隐马尔可夫模型应用于中文分词 4.6 性能评测 4.7...4.2 隐马尔可夫模型 隐马尔可夫模型( Hidden Markov Model, HMM)是描述两个时序序列联合分布 p(x,y) 的概率模型: x 序列外界可见(外界指的是观测者),称为观测序列(obsevation...4.5 隐马尔可夫模型应用于中文分词 HanLP 已经实现了基于隐马尔可夫模型的中文分词器 HMMSegmenter,并且实现了训练接口。...这说明增加隐马尔可夫模型的阶数并不能提高分词器的准确率,单靠提高转移概率矩阵的复杂度并不能提高模型的拟合能力,我们需要从别的方面想办法。...隐马尔可夫模型的基本问题有三个:样本生成、参数估计、序列预测。 然而隐马尔可夫模型用于中文分词的效果并不理想,虽然召回了一半的 OOV,但综合 F1 甚至低于词典分词。
过拟合的数学原理与解决方案 最大后验估计MAP 偏差方差二难 4、Python基础1 - Python及其数学库 解释器Python2.7与IDE:Anaconda/Pycharm Python...决策树应用于回归 多标记的决策树回归 决策树和随机森林的可视化 葡萄酒数据集的决策树/随机森林分类 11、提升 提升为什么有效 Adaboost算法 加法模型与指数损失 梯度提升决策树GBDT...LDA LDA开源包的使用和过程分析 Metropolis-Hastings算法 MCMC LDA与word2vec的比较 23、隐马尔科夫模型HMM 概率计算问题 前向/后向算法 HMM的参数学习...Baum-Welch算法详解 Viterbi算法详解 隐马尔科夫模型的应用优劣比较 24、HMM实践 动手自己实现HMM用于中文分词 多个语言分词开源包的使用和过程分析 文件数据格式UFT-...8、Unicode 停止词和标点符号对分词的影响 前向后向算法计算概率溢出的解决方案 发现新词和分词效果分析 高斯混合模型HMM GMM-HMM用于股票数据特征提取 原文参考:https:/
之前介绍过拟合种面积关系(species–arearelationship, SAR)工具: R——mmSAR对种面积关系进行拟合 今年3月份又出现了一个更强大的工具:sars 近期研究表明只使用单一的模型不能很好地拟合所有...因此作者开发了sars: 可以使用线性或非线性的回归拟合20个不同的模型(mmSAR只有8个模型); 还可以计算多个模型的平均曲线; 可用bootstrapping的方法得到置信区间。...针对SAR模型不统一的情况,目前有两种策略,一是多个模型进行拟合,根据一定的标准选出效果最优(如AIC最小)的模型;二是多个模型拟合,取平均曲线。但是目前没有R包能实现。...之前的两个包: BAT可拟合三种SAR模型:线性、幂律和对数模型。 mmSAR可拟合8种模型,但是相比于目前超过20种的模型也不够用。 Sars相比于mmSAR的优势在于: 绘图更友好。...将每一个成功拟合模型的预测丰度值乘以模型的权重(AIC,AICC,BIC等),然后对所有模型的结果值求和,单个模型的线性组合构建多模型平均曲线。
Python库种类很多,本文介绍了用于构建模型、语音图像处理的Python库。...是Python构建模型中的佼佼者,建立在NumPy,SciPy和matplotlib之上。...这个模型解释器可用于生成任何分类算法的解释。...它是一个用Python编写的音频信号处理库,主要用于音乐信息检索(MIR)任务。 ?.../py_intro/py_intro.html OpenCV-Python是用于图像处理的Python API,结合了OpenCV C ++ API和Python语言的最佳特性。
函数形式:X(t+1) = f( X(t) ) HMM由来 物理信号是时变的,参数也是时变的,一些物理过程在一段时间内是可以用线性模型来描述的,将这些线性模型在时间上连接,形成了Markov链。...既解决了短时信号的描述,又解决了时变模型间的转变问题。 RHmm包介绍 应用(训练样本是2007-2009年) 黑的是HMM模型的收益,红的是基准。...而且前面几年的都一直亏损状态,后面回本靠的是2013年底开始的一波牛市。 观众:老王你(模型)不行啊! 老王:heng!!! 男人不能说‘不行’的 ! 那么问题来了,如何改进HMM模型?...更一般来说一个模型如何改进?(一个模型包括:输入、样本筛选/过滤、拟合参数、拟合函数、模型的参数、目标函数等等等等。这么多东西需要测试, oh my god!) 改进 这里还是只讲HMM模型吧!...(同时使用50个HMM模型) 先看看数据: 红圈内的数字表示2010-01-12,有4个HMM投票给600005。 这样就可以使用了2种方案。
引言在机器学习模型中,过拟合和欠拟合是两种常见的问题。它们在模型训练和预测过程中扮演着重要的角色。...这意味着模型没有足够的学习能力来捕捉数据中的关键特征和模式。过拟合和欠拟合的影响与危害过拟合和欠拟合都会对机器学习模型的性能产生负面影响。...过拟合会导致模型在测试数据上的性能下降,使得模型无法泛化到实际应用场景。欠拟合则会使模型在训练数据上和测试数据上的性能都较差,无法准确预测新数据的标签或类别。...过拟合和欠拟合的原因与解决方法过拟合和欠拟合的原因各不相同,但都与模型的复杂度和训练数据的量有关。过拟合通常由于模型复杂度过高,导致在训练数据上过度拟合,无法泛化到测试数据。...另一方面,随着深度学习等新型算法的不断发展,如何将其应用于解决过拟合和欠拟合问题也将成为研究的重要方向。
在概述了模拟数据的过程之后,将隐马尔可夫模型应用于美国股票数据,以确定基本机制。 市场体制 将隐马尔可夫模型应用于状态检测是棘手的,因为该问题实际上是无监督学习的一种形式。...: 在模型拟合之后,可以绘制处于特定状态的后验概率。...财务数据 在本节中,将执行两个单独的建模任务。第一种将使HMM具有两个机制状态以拟合S&P500收益率,而第二个将利用三个状态。比较两个模型之间的结果。...使用quantmod库下载: 绘制gspcRets时间序列显示2008和2011时期: plot(gspcRets) [ 使用EM算法拟合隐马尔可夫模型。...2015年,市场再次变得更加混乱,这反映在HMM机制之间的切换增加。 数据的长度使后验概率图难以解释。
过拟合的概念? 首先我们来解释一下过拟合的概念? 过拟合就是训练出来的模型在训练集上表现很好,但是在测试集上表现较差的一种现象!下图给出例子: ?...我们将上图第三个模型解释为出现了过拟合现象,过度的拟合了训练数据,而没有考虑到泛化能力。在训练集上的准确率和在开发集上的准确率画在一个图上如下: ?...从图中我们能够看出,模型在训练集上表现很好,但是在交叉验证集上表现先好后差。这也正是过拟合的特征! 2....模型出现过拟合现象的原因 发生过拟合的主要原因可以有以下三点: (1)数据有噪声 (2)训练数据不足,有限的训练数据 (3)训练模型过度导致模型非常复杂 下面我将分别解释这三种情况(这里按自己的理解解释...这点和第一点俩点原因结合起来其实非常好理解,当我们在训练数据训练的时候,如果训练过度,导致完全拟合了训练数据的话,得到的模型不一定是可靠的。
其中,卡方表示整体模型中的变量相关关系矩阵与实际情况中的相关关系矩阵的拟合度。...因此,可以用卡方自由度比这一参数作为衡量整体模型拟合度的指标:若其值处于1至3之间,表示模型拟合度可以接受。...其大于0.9时认为模型拟合程度可以接受。 6 ECVI 综上可知,结构方程模型对应的模型拟合指标参数很多多。...其数值越小,表明模型内不同样本间的一致性越高,说明这一模型具有预测效度,即模型可以用于不同的样本。...AIC(Akaike Information Criterion),即赤池信息准则,其将待估计变量的个数考虑进假设模型拟合度中,从而比较两个具有不同潜在变量数量的模型的拟合优度。
,用树形度量拟合距离的问题在理论计算机科学和机器学习界都得到了极大的关注。...尽管存在几种可证明的精确算法,用于对本质上服从树形度量约束的数据进行树形度量拟合,但对于如何对结构与树形有适度(或大幅)差异的数据进行最佳的树形度量拟合,人们所知甚少。...对于这种有噪声的数据,大多数可用的算法表现不佳,并且经常在代表树中产生负的边缘权重。此外,目前还不知道如何选择最合适的近似目标进行噪声拟合。...作者的贡献如下:首先,作者提出了一种在双曲空间中进行树度量去噪的新方法(HyperAid),当以Gromov的δ双曲性来评价时,该方法将原始数据转化为更像树的数据。...第三,作者将HyperAid与强制非负边权的方案集成在一起。
领取专属 10元无门槛券
手把手带您无忧上云