将拆分的字符串展开为单独的列。 如果 True ,返回 DataFrame/MultiIndex 扩展维度。 如果 False ,则返回包含字符串列表的系列/索引。...确定替换是否区分大小写: 如果为 True,则区分大小写(如果 pat 是字符串,则默认为) 设置为 False 不区分大小写 如果 pat 是已编译的正则表达式,则无法设置。...如果width小于或等于字符串的长度,则不添加填充。 如果width大于字符串长度,则多余的空格将用空格或传递的字符填充。...字符串输入(“左”,“右”或“两者”)。默认值为“左”。填充将在各侧平均添加。 fillchar:要填充的字符,默认值为‘(空白)。...如果其他是包含 Series、Index 或 np.ndarray (1-dim) 组合的 list-like,则所有元素都将被解包并且必须单独满足上述条件。
BSD开源协议可以自修改源代码,也可以将修改后的代码作为开源或者专有软件再发布。 但需要满足三个条件: 1.如果再发布的产品中包含源代码,则在源代码中必须带有原来代码中的BSD协议。...为字典key,index为Series的标签(如果Series没有指定标签,则是默认数字标签) # Series可以长度不一样,生成的Dataframe会出现NaN值 输出为: {‘one’: 0 0.089832...# index在这里和之前不同,并不能改变原有index,如果指向新的标签,值为NaN (非常重要!)...3 Parker Python 3 4 Phill NaN 重新索引 重新索引是重新为原对象设定索引,以构建一个符合新索引的对象。...pandas中使用reindex()方法实现重新索引功能,该方法会参照原有的Series类对象或DataFrame类对象的索引设置数据:若该索引存在于新对象中,则其对应的数据设为原数据,否则填充为缺失值
这步使用正则提取出每个日期字符串,[\d.]+表示连续的数字或.用于匹配时间字符串,两个时间之间的连接字符可能是到或至。...droplevel(0, axis=1)用于删除多级索引指定的级别,axis=0可以删除行索引,axis=1则可以删除列索引,第一参数表示删除级别0。...当然如果列索引存在名称时还可以传入名称字符串,可参考官网文档: df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ......列的每个json字符串解析为字典对象。...而result["counts"] = df.counts则将原始数据的counts列添加到结果列中。
如果为True,则原地修改DataFrame,即不会返回新的DataFrame;如果为False(默认值),则返回一个新的DataFrame。 errors:指定如何处理未找到要删除的标签。...如果设置为True,则在数据类型转换时出现错误时,抛出异常;如果设置为False,则忽略错误,返回转换后的Series或DataFrame。...如果设置为True,则在转换数据类型时,自动填充缺失值。例如,将字符串类型转换为数值类型时,如果字符串中包含非数值字符,则自动将其填充为NaN。...如果对象是整数,则转换为相应的浮点数;如果对象是字符串,则要求字符串表示的是一个数值。...如果为True,则原地修改DataFrame,即不会返回新的DataFrame;如果为False(默认值),则返回一个新的DataFrame。 errors:指定如何处理未找到要删除的标签。
Stata 使用不同的命令导入数据, Python 则主要使用 read_*()(*代表数据格式) 方法。...为 True 。在 Python 中,np.nan 不等于任何东西。任何涉及 np.nan 的比较都始终为 False ,即使 np.nan == np.nan 。...另一个重要的区别是 np.nan 是浮点数据类型,因此 DataFrame 的任何列包含缺失数字的将是浮点型的。如果一列整型数据改变了,即使只有一行 np.nan ,整列将被转换为浮点型。...一旦搜索到符合条件的程序,它会自动配置成最高版本。输入 python query 可以查看当前配置版本和系统信息。...如果要永久设定,可以在命令后添加 permanently 选项。
如果 sep 为 None,则 C 引擎无法自动检测分隔符,但 Python 解析引擎可以,这意味着将使用后者,并通过 Python 的内置嗅探工具 csv.Sniffer 自动检测分隔符。...cache_dates 布尔值,默认为 True 如果为 True,则使用唯一的转换日期缓存来应用日期时间转换。在解析重复日期字符串时可能会产生显著的加速,特别是带有时区偏移的日期字符串。...,如果要将多个文本列解析为单个日期列,则会在数据前添加一个新列。...如果为 None,则返回一个 JSON 字符串。...如果没有,则名称为values。 对于DataFrames,使用列名的字符串版本。 对于Index(而不是MultiIndex),使用index.name,如果为 None,则使用index。
Python大数据分析 记录 分享 成长 ❝文章来源:towardsdatascience 作者:Soner Yıldırım 翻译\编辑:Python大数据分析 ❞ Pandas是python...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。..., raise_on_error=None) 参数作用: cond:布尔条件,如果 cond 为真,保持原来的值,否则替换为other other:替换的特殊值 inplace:inplace为真则在原数据上操作...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...如果为None, 则使用- - frame.columns.name或’variable’ value_name [标量, 默认为’value’]:是指用于” value”列的名称 col_level
如果列表的元素是元组或列表,则将多个列组合在一起并解析为日期(例如,如果日期/时间跨越两列)。 keep_date_col 如果连接列以解析日期,则保留连接的列;默认为False。...表 7.4:Python 内置字符串方法 方法 描述 count 返回字符串中子字符串的非重叠出现次数 endswith 如果字符串以后缀结尾,则返回True startswith 如果字符串以前缀开头...,则返回True join 用作分隔符将字符串用于连接其他字符串序列 index 如果在字符串中找到传递的子字符串,则返回第一个出现的起始索引;否则,如果未找到,则引发ValueError find 返回字符串中第一个出现的子字符串的第一个字符的位置...;类似于index,但如果未找到则返回-1 rfind 返回字符串中最后出现的子字符串的第一个字符的位置;如果未找到则返回-1 replace 用另一个字符串替换字符串的出现 strip, rstrip...;如果模式匹配,则返回一个匹配对象,否则返回 None search 扫描字符串以查找与模式匹配的内容,如果匹配,则返回一个匹配对象;与 match 不同,匹配可以出现在字符串的任何位置,而不仅仅是在开头
这种方式显示的代码可读性更高,通常使用四个空格或一个tab作缩进,如果是Python编程的新手,要注意这一点。...非数值nan在Python中与任何数值的运算结果都会产生nan,nan甚至不等于自身。...详细语法可见以下示例,下面的语法的判断逻辑为 : 若数值x小于0,令x等于0,若成立则打印信息'Negative changed to zero'; 若第一个条件不成立,判断x是否为0,若成立打印'Zero...读取数据 1.1 使用Pandas读取文件 Python的Pandas库提供了便捷读取本地结构化数据的方法,这里主要以csv数据为例。...在命令行中打印DataFrame对象其可读性可能会略差一些,如果在jupyter notebook 中执行的话,则DataFrame的可读性会大幅提升: ?
如果是类似“/usr/bin/python”的东西,则表示您正在使用系统中的 Python,这是不推荐的。 强烈建议使用 conda,以便快速安装和更新软件包和依赖项。...如果类似于“/usr/bin/python”,则您正在使用系统中的 Python,这是不推荐的。 强烈建议使用conda进行快速安装和包和依赖项更新。...如果显示类似“/usr/bin/python”的内容,则表示您正在使用系统中的 Python,这是不推荐的。 强烈建议使用conda,以快速安装和更新包和依赖项。...列 Name 包含文本数据,每个值为字符串,列 Age 是数字,列 Sex 是文本数据。...此DataFrame中的数据类型为整数(int64)、浮点数(float64)和字符串(object)。 注意 请求dtypes时,不使用括号!dtypes是DataFrame和Series的属性。
# 导入相关库 import numpy as np import pandas as pd 为什么要用str属性 文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,...Alice Name: city, dtype: object 可以看到,通过 str 属性来访问之后用到的方法名与 Python 内置的字符串的方法名一样。...get_dummies() 在分隔符上分割字符串,返回虚拟变量的DataFrame contains() 如果每个字符串都包含pattern / regex,则返回布尔数组 replace() 用其他字符串替换...pattern / regex的出现 repeat() 重复值(s.str.repeat(3)等同于x * 3 t2 >) pad() 将空格添加到字符串的左侧,右侧或两侧 center() 相当于str.center...pandas python
幸运的是,pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规变为想要的格式。...如果你发现了一种本书或pandas库中没有的数据操作方式,请尽管在邮件列表或GitHub网站上提出。实际上,pandas的许多设计和实现都是由真实应用的需求所驱动的。...本书后面会介绍pandas.get_dummies。 7.3 字符串操作 Python能够成为流行的数据处理语言,部分原因是其简单易用的字符串和文本处理功能。...findall返回的是字符串中所有的匹配项,而search则只返回第一个匹配项。match更加严格,它只匹配字符串的首部。...pandas的矢量化字符串函数 清理待分析的散乱数据时,常常需要做一些字符串规整化工作。
pandas里实现字符串的模糊筛选,可以用.str.contains()来实现,有点像在SQL语句里用的是like。...=True:regex :如果为True,则假定第一个字符串是正则表达式,否则还是字符串 5. where/mask 在SQL里,我们知道where的功能是要把满足条件的筛选出来。...pandas中where也是筛选,但用法稍有不同。 where接受的条件需要是布尔类型的,如果不满足匹配条件,就被赋值为默认的NaN或其他指定值。...举例如下,将Sex为male当作筛选条件,cond就是一列布尔型的Series,非male的值就都被赋值为默认的NaN空值了。...如果至少有一个值为True结果便为True,all需要所有值为True结果才为True,比如下面这样。
因为它是一个 Python 对象,所以None不能用于任何 NumPy/Pandas 数组,只能用于数据类型为'object'的数组(即 Python 对象数组): import numpy as np...例如,如果我们将整数数组中的值设置为np.nan,它将自动向上转换为浮点类型来兼容 NA: x = pd.Series(range(2), dtype=int) x ''' 0 0 1 1...(请注意,有人建议未来向 Pandas 添加原生整数 NA;截至本文撰写时,尚未包含此内容。)...转换为float64 np.nan boolean 转换为object None或np.nan 请记住,在 Pandas 中,字符串数据始终与object dtype一起存储。...1 2.0 3.0 5.0 5.0 2 NaN 4.0 6.0 6.0 请注意,如果在前向填充期间前一个值不可用,则 NA 值仍然存在。
import numpy as npimport pandas as p创建对象通过列表创建 Series 对象,pandas 会自动为他创建整型索引。...“重置索引”操作可以添加、删除行或列,或者修改行或列的位置,该操作返回数据表的副本。在重置索引操作中,如果指定的索引存在,则保留原有数据,若指定的索引不存在,则添加新的行或列(数据为Nan)。...我们的建议是,在一个list中将所有行都添加好,然后构造为DataFrame,而不是通过迭代的方式一行一行的向DataFrame中添加。...比如你要把 “男、女” 换成”男生、女生“,如果是1000万行的数据,如果类型是字符串,那么系统要处理1000万次,如果类型是分类,那么系统只处理2次,效率特别高。...可以是添加,原来共有3个类别,添加变成5个。也可以是减少。对于已存在的数据,如果新的分类不包含,则会变成nan。
日期调整前(为求简便这里用已经剔除分秒,剔除的办法后面在格式一致化的空格分割再详细说) #数据类型转换:字符串转换为日期 #errors='coerce' 如果原始数据不符合日期的格式,转换后的值为空值...五、逻辑问题需要筛选 还是Dataframe.loc这个函数的知识点。 由于loc还可以判断条件是否为True DataDF.loc[:,'UnitPrice']>0 ? ?...一般来说价格不能为负,所以从逻辑上来说如果价格是小于0的数据应该予以筛出 #删除异常值:通过条件判断筛选出数据 #查询条件 querySer=DataDF.loc[:,'Quantity']>0 #应用查询条件...缺失值有3种: 1)Python内置的None值 2)在pandas中,将缺失值表示为NA,表示不可用not available。...后面出来数据,如果遇到错误:说什么float错误,那就是有缺失值,需要处理掉 所以,缺失值有3种:None,NA,NaN 那None和NaN有什么区别呢: None是Python的一种数据类型, NaN
是Python最知名的数据分析和处理库。...如果您事先知道列名,则比以后删除更好。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...但新列将添加在末尾。如果要将新列放在特定位置,则可以使用插入函数。 df_new.insert(0, 'Group', group) df_new ?...endswith函数根据字符串末尾的字符进行相同的过滤。 Pandas可以对字符串进行很多操作。
写在最前 Python在数据分析领域有三个必须需要熟悉的库,分别是pandas,numpy和matplotlib,如果排个优先级的话,我推荐先学pandas。...但对于pandas,似乎完全绕不开,当然这三个库都是非常优秀的库,如果你已经入坑数据分析,建议全学?。...-- 筛选前100行 select * from table_name limit 100 Pandas pandas支持的方式就比较多了,如果你了解python的切片操作,以下应该会比较好理解。...; right_on:right中的连接键; left_index/right_index:默认为False,如果为True则使用索引作为连接的键。...除了正则之外,其实在.str中还内置了很多字符串的方法,如切割(split),替换(replace)等等。
Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...空值(np.nan、None、pd.NaT)既不是空字符串"",也不是空格" "。...从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...而不管是空字符串还是空格,其数据类型都是字符串,Pandas判断的结果不是空值。 2. 自定义缺失值有很多不同的形式,如上面刚说的空字符串和空格(当然,一般不用这两个,因为看起来不够直观)。...to_replace和value不仅支持Python中的整型、字符串、列表、字典等,还支持正则表达式。
都表现为NAN keep_default_na 如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加 na_filter 是否检查丢失值(空字符串或者是空值...verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。 skip_blank_lines 如果为True,则跳过空行;否则记为NaN。...data = pd.read_csv("data.txt",sep="\s+") 读取的文件中如果出现中文编码错误 需要设定 encoding 参数 为行和列添加索引 用参数names添加列索引...squeeze 如果解析的数据只包含一列,则返回一个Series dtype 数据或列的数据类型,参考read_csv即可 engine 如果io不是缓冲区或路径,则必须将其设置为标识io。...如果解析日期,则解析默认的日期样列 numpy 直接解码为numpy数组。默认为False;仅支持数字数据,但标签可能是非数字的。
领取专属 10元无门槛券
手把手带您无忧上云