首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

3 个不常见但非常实用的Pandas 使用技巧

To_period 在 Pandas 中,操作 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...Cumsum 和 groupby cumsum 是一个非常有用的 Pandas 函数。它计算列中值的累积和。...以下是我们通常的使用方式: df["cumulative_sum"] = df["amount"].cumsum()df.head() 这样就获得了金额列的列值累积总和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类的累积总和列包含为每个类单独计算的累积值总和。 3. Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。

1.3K10

3 个不常见但非常实用的Pandas 使用技巧

1、To_period 在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...和 groupby cumsum 是一个非常有用的 Pandas 函数。...它计算列中值的累积和。以下是我们通常的使用方式: df["cumulative_sum"] = df["amount"].cumsum() df.head() 这样就获得了金额列值的累积总和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类·的累积总和列包含为每个类单独计算的累积值总和。 3、Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    Pandas是一个受众广泛的python数据分析库。它提供了许多函数和方法来加快数据分析过程。pandas之所以如此普遍,是因为它的功能强大、灵活简单。...本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。 ? 首先,我们导入 numpy和 pandas包。...Pandas提供了一个易于使用的函数来计算加和,即cumsum。 如果我们只是简单使用cumsum函数,(A,B,C)组别将被忽略。...这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。...Select_dtypes Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。

    5.7K30

    python流数据动态可视化

    特别是,我们将展示如何使用HoloViews的Pipe和Buffer流来处理流数据源,而无需从DynamicMap可调用内部获取或生成数据。...请注意,此页面演示了需要实时运行的Python服务器的功能。当导出到pyviz.org网站上的静态HTML页面时,您将只看到一个图。...当将此代码作为Jupyter笔记本运行时,您应该逐个单元地执行它以依次查看每个操作的效果。...Buffer自动累积表格数据的最后一行N行,其中N由length定义。 累积数据的能力允许对最近的数据历史执行操作,而绘制后端(例如散景)可以通过仅发送最新的补丁来优化绘图更新。...在这个例子中,我们减去一个固定的偏移,然后计算累积和,给我们一个随机漂移的时间序列。

    4.2K30

    基尼系数直接计算法_基尼系数简单的计算方法

    大家好,又见面了,我是你们的朋友全栈君。 使用两种方法,通过python计算基尼系数。 在sql中如何计算基尼系数,可以查看我的另一篇文章。两篇文章取数相同,可以结合去看。...(sorted(np.append(wealths, 0))) #加上0,再排序,再计算cumsum # 取最后一个,也就是原数组的和 sum_wealths = cum_wealths...(u'人数累积占比') #ax.set_ylabel(u'收入累积占比') #pl.show() # 计算曲线下面积的通用方法 B = np.trapz(yarray,...(2*(sum(t)-1)+1) # 跟文档中的有一点不一样,在最后的计算中减去了1 # 但其实是一致的,文档中分成了5组,w1到w5,求和的是4个y轴值的和,即为w1-w4,是到n-1的和 # 所以可改写成...本文中采用的100个样本和分成100/20/50都是可均匀分配的情况。如果不能均匀分配,可能取m的方式需要优化,应该采取python内含的最大力度均匀分组的函数。

    1.4K30

    Pandas图鉴(二):Series 和 Index

    Pandas[1]是用Python分析数据的工业标准。只需敲几下键盘,就可以加载、过滤、重组和可视化数千兆字节的异质信息。...安装非常方便: pip install pandas-illustrated 索引 负责通过标签获取系列元素(以及DataFrame的行和列)的对象被称为索引。...默认情况下,当创建一个没有索引参数的Series(或DataFrame)时,它初始化为一个类似于Python的range()的惰性对象。...nlargest和nsmallest,默认情况下,按外观顺序排列; diff,第一次离散差分; cumsum和cumprod,累积和,以及乘积; cummin和cummax,累积最小和最大。...字符串和正则表达式 几乎所有的Python字符串方法在Pandas中都有一个矢量的版本: count, upper, replace 当这样的操作返回多个值时,有几个选项来决定如何使用它们: split

    33820

    SQL、Pandas、Spark:窗口函数的3种实现

    值得指出的是,对于每名学生,当切分窗口不足指定窗口大小(即目标行数)时会按实际的数据进行聚合,例如学生A,1月31日对应的近3次平均分即为本月成绩自身;2月28日对应近3次平均分即为本月成绩和上月成绩的平均分...03 Pandas实现 Pandas作为Python数据分析与处理的主力工具,自然也是支持窗口函数的,而且花样只会比SQL更多。...基本思路如下:首先仍然分别用uid和score字段进行分组和排序,而后通过对取值=1的常数列num进行cumsum,即累加,即可获取分组排名结果。...")['num'].cumsum()) ?...A2:对于这一特定需求,Pandas中实际上是内置了偏移函数shift,专门用于求解当前行的相对引用值。

    1.5K30

    统计师的Python日记【第5天:Pandas,露两手】

    本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、循环和条件、类。...数据导出 ---- 统计师的Python日记【第5天:Pandas,露两手】 前言 根据我的Python学习计划: Numpy → Pandas → 掌握一些数据清洗、规整、合并等功能 → 掌握类似与SQL...上一集开始学习了Pandas的数据结构(Series和DataFrame),以及DataFrame一些基本操作:改变索引名、增加一列、删除一列、排序。 今天我将继续学习Pandas。...mad() 根据平均值计算的平均绝对离差 var() 方差 std() 标准差 skew() 偏度 kurt() 峰度 cumsum() 累计和 cummax()、cummin() 累计最大值和累计最小值...索引的名字也可以当变量一样命名,分别命名country和year两个索引名: ? 用 .swaplevel() 可以调换两个索引contry和year的位置: ? 3.

    3K70

    一场pandas与SQL的巅峰大战(五)

    第三篇文章一场pandas与SQL的巅峰大战(三)围绕日期操作展开,主要讨论了日期获取,日期转换,日期计算等内容。...公众号后台回复“对比五”,可以获取本文全部代码和数据。数据的样例为: ? 我们的目标是,计算累计到当天的销售额占总销售额的比例。...在实现时,首先分别计算出累计到当天的销售金额和总计的金额,然后就可以很方便的求出比例了。 MySQL计算累计百分比 ? 1.不分组情况 最直观的思路是,对每一行的金额,都累加从第一行到当前行的金额。...我们一起来看一下使用三种函数计算分组和不分组累计百分比的方法。 ? 1.不分组情况 cumsum函数 cumsum是pandas中专门用于计算累计和的函数。...当窗口超过dataframe的长度时,可以实现与expanding同样的效果。

    2.6K10

    Pandas透视表及应用

    之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...= '会员卡号',aggfunc = 'count’)  计算存量 cumsum 对某一列 做累积求和 1 1+2 1+2+3 1+2+3+4 ......#通过cumsum 对月增量做累积求和 month_count.loc[:,'存量'] = month_count['月增量'].cumsum() month_count 可视化,需要去除第一个月数据...第一个月数据是之前所有会员数量的累积(数据质量问题) 由于会员等级跟消费金额挂钩,所以会员等级分布分析可以说明会员的质量  通过groupby实现,注册年月,会员等级,按这两个字段分组,对任意字段计数... 整体等级分布 报表可视化 从业务角度,将会员数据拆分成线上和线下,比较每月线上线下会员的运营情况  将“会员来源”字段进行拆解,统计线上线下会员增量  各地区会销比 会销比的计算和分析会销比的作用

    23210

    用pandas 进行投资分析

    很好,但本文为您展示一种更简单、更直观、功能更强大的方法,使用 IPython 和 pandas 进行同种分析。 工具准备 IPython 库是使用 Python 的数据科学家的重要工具之一。...Python Data Analysis Library (pandas) 是一个拥有 BSD 许可证的开源库,为 Python 编程语言提供了高性能的、易于使用的数据结构和数据分析工具。...步骤阅读 累计和 这种简单图表存在的问题是不太容易理解图中的信息。...进一步的分析涉及到确定 alpha、beta、预期收益,以及进行 Fama-French 和有效边界优化之类的高级分析。 本文中,Python 用于执行临时应急的投资组合分析。...Python 逐渐变成用于真实数据分析的首选语言。Pyomo、pandas、Numpy 和 IPython 之类的库使得在 Python 中应用高级数学知识变得更加轻松。

    1.2K50

    Pandas库常用方法、函数集合

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...这里列举下Pandas中常用的函数和方法,方便大家查询使用。...describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:...计算分组的累积和、最小值、最大值、累积乘积 数据清洗 dropna: 丢弃包含缺失值的行或列 fillna: 填充或替换缺失值 interpolate: 对缺失值进行插值 duplicated: 标记重复的行...用于访问Datetime中的属性 day_name, month_name: 获取日期的星期几和月份的名称 total_seconds: 计算时间间隔的总秒数 rolling: 用于滚动窗口的操作 expanding

    31510

    用python怎么画?

    [0]}, inplace=True) # 设置瀑布图的第一个数值 change.iloc[0, 2] = change.iloc[0, 0] # 排除没有变化的项目 change = change...= max / 25 pos_offset = max / 50 plot_offset = int(max / 10) # 获取标签的高度位置 y_height = trans.销售变化.cumsum...小结 本文介绍了瀑布图的一个应用案例,并给出了详细的 Python 实现代码,在公众号后台发送「瀑布」两个字,可以获得本文的数据文件和完整代码。...所以,我渐渐地把很多工作,都转换为使用 Python 来完成,以提升自己的工作效率和工作质量,让自己有时间去做更多更有价值的事情。...最后再次重复一遍哈,在公众号后台发送「瀑布」两个字,可以获得本文的数据文件和完整代码。 ?

    3.5K60

    AI数据分析:用deepseek进行贡献度分析(帕累托法则)

    在数据分析中,帕累托法则可以用来识别和专注于最具影响力的因素。以下是帕累托分析的基本步骤: 数据收集:首先,收集相关数据,确定你的分析目标。...数据排序:将数据按照某个特定的标准(如销售额、成本、频率等)进行排序。 计算总和:计算所有项目的总和。 确定累积百分比:对于每个项目,计算累积百分比。...识别关键因素:识别累积百分比达到80%的那些关键因素(原因)。这通常意味着这些因素是最重要的贡献者。...分析和决策:根据帕累托分析的结果,分析关键因素对整体效益的影响,并做出相应的决策 任务:计算下面Excel表格中用活用户的贡献度 在deepseek中输入提示词: 你是一个Python编程专家,要完成一个...Python脚本编写的任务,具体步骤如下: 读取Excel文件"F:\AI自媒体内容\AI行业数据分析\poetop50bots中文翻译.xlsx", 用matplotlib绘制一个柱状图: 从A列“热门

    55910

    Python 数据分析(PYDA)第三版(二)

    当您需要更多控制数据在内存和磁盘上的存储方式,特别是对于大型数据集时,知道您可以控制存储类型是很好的。...: arr.cumsum() Out[200]: array([ 0, 1, 3, 6, 10, 15, 21, 28]) 在多维数组中,像cumsum这样的累积函数返回一个相同大小的数组,但是根据每个较低维度切片沿着指定轴计算部分累积...(axis=0)计算沿着行的累积和,而arr.cumsum(axis=1)计算沿着列的和: In [203]: arr.cumsum(axis=0) Out[203]: array([[ 0, 1,...min, max 最小值和最大值 argmin, argmax 分别是最小和最大元素的索引 cumsum 从 0 开始的元素的累积和 cumprod 从 1 开始的元素的累积乘积 布尔数组的方法 在前面的方法中...kurt 值的样本峰度(第四时刻) cumsum 值的累积和 cummin, cummax 值的累积最小值或最大值,分别 cumprod 值的累积乘积 diff 计算第一个算术差异(对时间序列有用)

    29400

    《Pandas Cookbook》第06章 索引对齐1. 检查索引2. 求笛卡尔积3. 索引爆炸4. 用不等索引填充数值5. 从不同的DataFrame追加列6. 高亮每列的最大值7. 用链式方法重现

    _shared_docs['fillna'] % _shared_doc_kwargs) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/..._data: /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in reindex_indexer(self...,用eq方法比较DataFrame的每个值和该列的最大值 In[78]: college_n.eq(college_n.max()).head() Out[78]: ?...转而使用cumsum()累积求和 In[82]: has_row_max.sum() In[83]: college_n.eq(college_n.max()).cumsum() Out[83]:...如果再使用一次cunsum,1在每列中就只出现一次,而且会是最大值首次出现的位置: >>> college_n.eq(college_n.max()).cumsum().cumsum() ?

    3K10
    领券