首页
学习
活动
专区
圈层
工具
发布

手把手 | 如何用Python做自动化特征工程

转换作用于单个表(从Python角度来看,表只是一个Pandas 数据框),它通过一个或多个现有的列创建新特征。 例如,如果我们有如下客户表。...此过程包括通过客户信息对贷款表进行分组,计算聚合,然后将结果数据合并到客户数据中。以下是我们如何使用Pandas库在Python中执行此操作。...但是,对于payments数据框,没有唯一索引。当我们将此实体添加到实体集时,我们需要传入参数make_index = True并指定索引的名称。...将数据框添加到实体集后,我们检查它们中的任何一个: 使用我们指定的修改模型能够正确推断列类型。接下来,我们需要指定实体集中的表是如何相关的。...我们可以将功能堆叠到我们想要的任何深度,但在实践中,我从未用过超过2的深度。在此之后,生成的特征就很难解释,但我鼓励任何有兴趣的人尝试“更深入” 。

5.2K10

如果 .apply() 太慢怎么办?

如果你在Python中处理数据,Pandas必然是你最常使用的库之一,因为它具有方便和强大的数据处理功能。...但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...这比对整个数据帧使用的 .apply() 函数快26倍!! 总结 如果你尝试对Pandas数据帧中的单个列使用 .apply(),请尝试找到更简单的执行方式,例如 df['radius']*2。...或者尝试找到适用于任务的现有NumPy函数。 如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。

91510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    大家好,又见面了,我是你们的朋友全栈君。 有一个带有三列数据框的CSV格式文件。 第三栏文字较长。...当我尝试使用pandas.read_csv打开文件时,出现此错误消息 message : UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0xa1...那么,如何打开该文件并获取数据框? 参考方案 试试这个: 在文本编辑器中打开cvs文件,并确保将其保存为utf-8格式。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...start…Python sqlite3数据库已锁定 – python 我在Windows上使用Python 3和sqlite3。

    15.4K30

    可自动构造机器学习特征的Python库

    通过从一或多列中构造新的特征,「转换」作用于单张表(在 Python 中,表是一个 Pandas DataFrame)。举个例子,若有如下的客户表: ?...这个过程包括根据不同客户对贷款表进行分组并计算聚合后的统计量,然后将结果整合到客户数据中。以下是我们在 Python 中使用 Pandas 库执行此操作。...每个实体都必须带有一个索引,它是一个包含所有唯一元素的列。就是说,索引中的每个值只能在表中出现一次。在 clients 数据框中的索引是 client_id,因为每个客户在该数据框中只对应一行。...然而,payments 数据框不存在唯一索引。当我们把 payments 数据框添加到实体集中时,我们需要传入参数 make_index = True,同时指定索引的名字。...在将该数据框添加到实体集中后,我们检查整个实体集: ? 列的数据类型已根据我们指定的修正方案被正确推断出来。接下来,我们需要指定实体集中表是如何关联的。

    2.3K30

    资源 | Feature Tools:可自动构造机器学习特征的Python库

    通过从一或多列中构造新的特征,「转换」作用于单张表(在 Python 中,表是一个 Pandas DataFrame)。举个例子,若有如下的客户表: ?...这个过程包括根据不同客户对贷款表进行分组并计算聚合后的统计量,然后将结果整合到客户数据中。以下是我们在 Python 中使用 Pandas 库执行此操作。...每个实体都必须带有一个索引,它是一个包含所有唯一元素的列。就是说,索引中的每个值只能在表中出现一次。在 clients 数据框中的索引是 client_id,因为每个客户在该数据框中只对应一行。...然而,payments 数据框不存在唯一索引。当我们把 payments 数据框添加到实体集中时,我们需要传入参数 make_index = True,同时指定索引的名字。...在将该数据框添加到实体集中后,我们检查整个实体集: ? 列的数据类型已根据我们指定的修正方案被正确推断出来。接下来,我们需要指定实体集中表是如何关联的。

    2.7K20

    没错,这篇文章教你妙用Pandas轻松处理大规模数据

    最原始的数据是 127 个独立的 CSV 文件,不过我们已经使用 csvkit 合并了这些文件,并且在第一行中为每一列添加了名字。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...你可以看到,存储在 Pandas 中的字符串的大小与作为 Python 中单独字符串的大小相同。 使用分类来优化对象类型 Pandas 在 0.15版引入了 Categoricals (分类)。...在读取数据时选择类型‍‍‍‍‍‍ 到目前为止,我们已经‍探索了减少现有数‍据框内存占用的方法。首先,读入阅读数据框,然后再反复迭代节省内存的方法,这让我们可以更好地了解每次优化可以节省的内存空间。...然而,正如我们前面提到那样,我们经常没有足够的内存来表示数据集中所有的值。如果一开始就不能创建数据框,那么我们该怎样使用内存节省技术呢? 幸运的是,当我们读取数据集时,我们可以制定列的最优类型。

    4.5K40

    初学者使用Pandas的特征工程

    使用pandas Dataframe,可以轻松添加/删除列,切片,建立索引以及处理空值。 现在,我们已经了解了pandas的基本功能,我们将专注于专门用于特征工程的pandas。 !...注意:在代码中,我使用了参数drop_first,它删除了第一个二进制列(在我们的示例中为Grocery Store),以避免完全多重共线性。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。...没有传统的方式或类型可以创建新特征,但是pandas具有多种函数,可以使你的工作更加舒适。 我强烈建议你选择任何数据集,并自行尝试所有列出的技术,并在下面评论多少以及哪种方法对你的帮助最大。

    5.7K31

    分析你的个人Netflix数据

    时代变了,现在,Netflix允许你下载一个名副其实的关于你账户的数据宝库。通过使用Python和Pandas编程,我们现在可以得到这个问题的具体答案:我花了多少时间看《老友记》?我们来看看吧。...第3步:把你的数据加载到一个Jupyter笔记本中 我们将导入pandas库并将Netflix数据CSV读入pandas数据框: import pandas as pd df = pd.read_csv...在本教程中,我们随后将使用reset_index()将其转换回常规列。根据你的偏好和目标,这可能不是必需的,但是为了简单起见,我们将尝试使用列中的所有数据进行分析,而不是将其中的一些数据作为索引。...但我们还有一个数据准备任务要处理:过滤标题列 我们有很多方法可以进行过滤,但是出于我们的目的,我们将创建一个名为friends的新数据框,并仅用标题列包含“friends”的行填充它。...在我们的数据探索中,我们注意到当某些内容(如章节预览)在主页上自动播放时,它将被视为我们数据中的视图。 然而,只看两秒钟的预告片和真正看一部电视剧是不一样的!

    2.1K50

    pandas 入门 1 :数据集的创建和绘制

    read_csv处理的第一个记录在CSV文件中为头名。这显然是不正确的,因为csv文件没有为我们提供标题名称。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...此时的名称列无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏中可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该只包含代表出生在一个特定年份具有特定名称的婴儿数目的整数。...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    7.8K10

    利用query()与eval()优化pandas代码

    简介 利用pandas进行数据分析的过程,不仅仅是计算出结果那么简单,很多初学者喜欢在计算过程中创建一堆命名「随心所欲」的中间变量,一方面使得代码读起来费劲,另一方面越多的不必要的中间变量意味着越高的内存占用...TV」 ❞ 图3 通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...,其中对字段名的命名规范有一定要求:当字段名符合Python中对变量命名规范的要求时,即变量名完全由「字母」、「数字」、「下划线」构成且不以「数字」开头,这样的字段是可以直接写入query()表达式的。...: 「常规index」 对于只具有单列Index的数据框,直接在表达式中使用index: # 找出索引列中包含king的记录,忽略大小写 netflix.set_index('title').query...,我可以在很多数据分析场景中实现0中间变量,一直链式下去,延续上面的例子,当我们新增了这两列数据之后,接下来我们按顺序进行按月统计影片数量、字段重命名、新增当月数量在全部记录排名字段、排序,其中关键的是

    1.9K30

    (数据科学学习手札92)利用query()与eval()优化pandas代码

    图3   通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...,其中对字段名的命名规范有一定要求:当字段名符合Python中对变量命名规范的要求时,即变量名完全由字母、数字、下划线构成且不以数字开头,这样的字段是可以直接写入query()表达式的。   ...Index的数据框,直接在表达式中使用index: # 找出索引列中包含king的记录,忽略大小写 netflix.set_index('title').query("index.str.contains...图13   虽然assign()已经算是pandas中简化代码的很好用的API了,但面对eval(),还是逊色不少 DataFrame.eval()通过传入多行表达式,每行作为独立的赋值语句,其中对应前面数据框中数据字段可以像...,我可以在很多数据分析场景中实现0中间变量,一直链式下去,延续上面的例子,当我们新增了这两列数据之后,接下来我们按顺序进行按月统计影片数量、字段重命名、新增当月数量在全部记录排名字段、排序,其中关键的是新增当月数量在全部记录排名字段

    2.1K20

    Pandas数据应用:推荐系统

    而Pandas作为Python中强大的数据分析库,在处理推荐系统的数据预处理、特征工程等环节中发挥着重要作用。二、常见问题及解决方案(一)数据缺失值处理问题描述在构建推荐系统时,数据集往往存在缺失值。...例如,在用户-物品评分矩阵中,很多用户可能没有对某些物品进行评分,这就导致了数据的不完整性。解决方法使用Pandas中的fillna()函数可以填充缺失值。...示例代码:import pandas as pd# 假设df是一个包含用户评分数据的数据框# 对数值型列使用均值填充df['rating'] = df['rating'].fillna(df['rating...例如,在数据框中查找一个拼写错误或者不存在的列。解决方法检查列名是否正确,可以通过columns属性查看数据框的所有列名。也可以使用get()方法来安全地获取列,如果列不存在则返回默认值。...例如,在进行分组聚合操作时,传入的聚合函数不符合要求。解决方法确保数据的格式和范围符合操作要求。对于分组聚合操作,可以先检查数据的分布情况,确保数据适合进行相应的聚合操作。

    67410

    独家 | Bamboolib:你所见过的最有用的Python库之一(附链接)

    由Andrea Piacquadio拍摄,来源:Pexels 下面是我对这个很酷的Python库的看法,以及为什么你应该尝试一下。 我喜欢写关于Python库的文章。...通常,我尝试在同一个博客中包含几个库来充实博客。然而,我偶尔会发现一些很酷的库,它们值得拥有自己的博客。Bamboolib就是这种库! Bamboolib是那种会让你想:我以前怎么不知道这些?...然后,单击列类型(列名称旁边的小字母),选择新的数据类型和格式,如果需要的话,可以选择一个新的名称,然后单击执行。 您是否看到单元格中也添加了更多代码?...删除列 如果您意识到不需要列,只需在search转换框中搜索下拉,选择下拉,选择想要下拉的列,然后单击执行。 重命名列 现在您需要重命名列,这是再容易不过的了。...幸运的是,Bamboolib可以通过非常直观和简单的方式制作群组。在Search转换框中搜索分组by,选择要分组的列,然后选择要查看的计算。 在这个例子中,我希望看到每个平台上的游戏数量和平均分数。

    2.7K20

    8 个例子帮你快速掌握 Pandas 索引操作

    如果您使用Python作为数据处理的语言,那么pandas很可能是你代码中使用最多的库之一。pandas的关键数据结构是DataFrame,这是一个类似电子表格的数据表,由行和列组成。...在处理dataframe时,我们经常需要处理索引,这可能很棘手。在本文中,让我们回顾一些关于用pandas处理索引的技巧。 在读取时指定索引列 在许多情况下,我们的数据源是一个CSV文件。...将索引从groupby操作转换为列 分组是最常用的方法,让我们通过添加分组列来继续使用在上一步中创建的df0 。...索引的直接赋值 当有一个现有的DataFrame时,可能需要使用不同的数据源或来自单独的操作来分配索引。在这种情况下,可以直接将索引分配给现有的DataFrame。...总结 在本文中,我们回顾了在pandas中最常见的索引操作。熟悉它们对你处理pandas的数据非常有帮助。当然,我没有讨论MultiIndex,这可以在以后的文章中讨论。 作者:Yong Cui

    1.1K30

    带你和Python与R一起玩转数据科学: 探索性数据分析(附代码)

    还有哪些关于这个疾病的真相可以从我们的数据中得到? 描述性统计 Python 在Python中,对一个pandas.DataFrame对象的基本的描述性统计方法是describe()。...第一个方法是一个基本的线图绘制,作用于索引中的连续变量。当我们用IPython notebook工具绘图时,这第一条线也许我们会用得着: ? ?...根据这张图,改善和异常国家的发病率增长趋势在同一时间发生了相同的波动和恢复,并且在大约2002年的时候有事情发生。在下一章节中我们将尝试找出到底发生了什么。...R 我们已经了解到在R中我们可以用max函数作用于数据框的列上以得到列的最大值。额外的,我们还可以用which.max来得到最大值的位置(等同于在Pandas中使用argmax)。...事实上,当我们用Python时,Pandas中所包含的基本的绘图功能使这个步骤更加清晰和便捷。不管怎样,我们这里回答的这些问题都非常简单而且没有包含多变量和数据编码。

    2.3K31

    盘点 Pandas 中用于合并数据的 5 个最常用的函数!

    作者:阿南 整理:小五 如何在Pandas合并数据,大家肯定都不陌生。 作为一个初学者,我发现自己学了很多,却没有好好总结一下。...正好看到一位大佬 Yong Cui 总结的文章,我就按照他的方法,给大家分享用于Pandas中合并数据的 5 个最常用的函数。这样大家以后就可以了解它们的差异,并正确使用它们了。...pd.concat([df0, df1], axis=1) 默认情况下,当我们横向合并数据(沿列)时,Pandas其实是按照索引来连接的。...是指两个数据框中的数据交叉匹配,出现n1*n2的数据量,具体如下所示。...append 函数专门用于将行附加到现有 DataFrame 对象,创建一个新对象。我们先来看一个例子。

    4.1K30

    Python入门之数据处理——12种有用的Pandas技巧

    翻译:黄念 校对:王方思 小编和大伙一样正在学习Python,在实际数据操作中,列联表创建、缺失值填充、变量分箱、名义变量重新编码等技术都很实用,如果你对这些感兴趣,请看下文: ◆ ◆ ◆ 引言...它作为一种编程语言提供了更广阔的生态系统和深度的优秀科学计算库。 在科学计算库中,我发现Pandas对数据科学操作最为有用。...Pandas,加上Scikit-learn提供了数据科学家所需的几乎全部的工具。本文旨在提供在Python中处理数据的12种方法。此外,我还分享了一些让你工作更便捷的技巧。...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。

    6.2K50

    【如何在 Pandas DataFrame 中插入一列】

    前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。

    5.1K10

    【Python】已解决:(pandas读取DataFrame列报错)raise KeyError(key) from err KeyError: (‘name‘, ‘age‘)

    一、分析问题背景 在使用pandas库处理数据时,我们经常会遇到需要读取DataFrame中特定列的情况。...然而,有时在尝试访问某些列时会触发KeyError异常,这通常发生在尝试访问DataFrame中不存在的列时。...列名在DataFrame中不存在:你想要访问的列名可能根本就没有被包含在DataFrame中。 使用了错误的方式来同时访问多个列:如果你试图同时访问多个列,但方法不正确,也可能导致这个错误。...数据类型匹配:虽然这与KeyError不直接相关,但在处理数据时确保数据类型匹配也是很重要的,以避免其他类型的错误。 代码风格:遵循PEP 8等Python编码规范,以保持代码清晰、可读。...通过遵循上述指南和最佳实践,你可以减少在访问pandas DataFrame列时遇到KeyError的风险。

    59210
    领券