信息检索的布尔模型 用0和1表示某个词是否出现在文档中。...如下图例子,要回答“Brutus AND Caesar but NOT Calpurnia”,我们需要对词的向量做布尔运算,即110100 AND 110111 AND 101111=100100 对应的文档是...倒排索引 倒排索引是为了解决上述布尔模型的问题。具体来说,每个词用链表顺序存储文档编号。如下图所示: ? 建立索引的核心是将词按字母顺序排列,合并重复词,但是要记录词频。 3....倒排索引模型中对查询语句(AND)的处理 1、求Brutus AND Calpurnia,即求两个链表的交集。 ?
---- 第01章 Pandas基础 第02章 DataFrame运算 第03章 数据分析入门 第04章 选取数据子集 第05章 布尔索引 第06章 索引对齐 第07章 分组聚合、过滤、转换...计算布尔值统计信息 # 读取movie,设定行索引是movie_title In[2]: pd.options.display.max_columns = 50 In[3]: movie = pd.read_csv...用布尔索引过滤 # 读取movie数据集,创建布尔条件 In[15]: movie = pd.read_csv('data/movie.csv', index_col='movie_title')...用标签索引代替布尔索引 # 用布尔索引选取所有得克萨斯州的学校 >>> college = pd.read_csv('data/college.csv') >>> college[college['STABBR...Out[33]: True # 用布尔索引选取斯坦福大学 In[34]: college[college['INSTNM'] == 'Stanford University'] Out[34]:
数据如下: 目的是修改index的1-0到1. 1. rename data = data.index.map(lambda x:x.replace('1-0...
Python布尔索引的使用 说明 1、布尔索引需要找到每行的'A'列的真值等于'foo',然后使用这些真值来确定要保留哪些行。 2、通常将这个系列命名为一个真值数组mask. 进行使用。...mask = df['A'] == 'foo' 然后我们可以使用此掩码对数据框进行切片或索引 df[mask] A B C D 0 foo one 0 0 2...以上就是Python布尔索引的使用,希望对大家有所帮助。
倒排索引 倒排索引用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。...为每个单词都进行类似处理,最终获得的结果,就叫倒排索引。...左边的所有单词项,称之为词典,而每个词典项(如'hello'),指向一个倒排记录表(如[1,3]) 建立过程 通过以下的步骤,可以为文档集建立倒排索引 获取每个文档的单词表(代码 give_word_list...倒排索引至此已完全建立。 搜索 依照前文,我们已经可以求两个集合的交集并集,有了倒排索引,就能进行布尔查询。 例如,要求文档集中包含"i"和"can"的文档号。可进行如下操作: 1....对这两个集合求交集 4.
Pandas-13.索引 索引运算符[]和属性运算符.可用的。...另外支持三种多轴索引: .ix()已废弃 索引运算符 对象 索引 描述 Series s[index] 标量值 DataFrame df[row_index, column_index] 标量对象 Panel...0.611385 e 1.047590 f -1.320031 g -1.058925 h 0.612909 Name: A, dtype: float64 ''' .loc() 读取标签索引...有多种访问方式: 单个标签变量 标签列表 切片对象 布尔数组 需要两个单/列表/范围运算符,用,分隔,第一个表示行,第二个表示列 以如下代码作为例子: df = pd.DataFrame(np.random.randn...df.loc['a']>0) ''' A True B True C False D False Name: a, dtype: bool ''' .iloc() 读取数字索引
索引排序-sort_index 针对Pandas中索引的排序功能介绍,详细内容参考官网: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html...,表示根据指定的索引进行排序,可以是索引号,名称或者多个索引组成的列表 ascending:排序规则,默认是升序 inplace:表示是否原地修改;默认是False kind:表示选的排序算法 na_position...默认是last sort_remaining: 数据模拟 import pandas as pd import numpy as np df = pd.DataFrame({"name":["Jimmy...1.0 150 guangzhou 28 John axis=1表示在列方向上进行排序;上面的列字段全部是字母,则根据它们的ASCII码表的大小来排序 参数ignore_index 默认情况是保留原索引...如果是设置成True,则行索引变成0,1,2…N-1 # 默认情况 df.sort_index(axis=1,ignore_index=False) .dataframe tbody tr
文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的 对象...布尔索引 示例代码: # 布尔索引 ser_bool = ser_obj > 2 print(ser_bool) print(ser_obj[ser_bool]) print(ser_obj[ser_obj...:标签、位置和混合 Pandas的高级索引有3种 1. loc 标签索引 DataFrame 不能直接切片,可以通过loc来做切片 loc是基于标签名的索引,也就是我们自定义的索引名 示例代码...,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充
Python Pandas 高级教程:多级索引 Pandas 中的多级索引是一种强大的工具,用于处理具有多个维度或层次的数据。多级索引可以在行和列上创建层次结构,提供更灵活的数据表示和分析方式。...在本篇博客中,我们将深入介绍 Pandas 中的多级索引,通过实例演示如何应用这一功能。 1. 安装 Pandas 确保你已经安装了 Pandas。...导入 Pandas 库 在使用 Pandas 之前,首先导入 Pandas 库: import pandas as pd 3....总结 多级索引是 Pandas 中用于处理层次化数据的强大工具,通过多级索引,你可以更灵活地组织和分析数据。在实际应用中,多级索引常用于处理时间序列、多维度数据等场景。...希望这篇博客能够帮助你更好地理解和运用 Pandas 中的多级索引。
层次化索引是pandas的一项重要功能,它能使你在一个轴上有多个索引级别,也就是说,它能使你以低维度形式处理高维度数据,比如下面的代码: data = pd.Series(np.random.randn...1, 2, 3]], labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]]) 有了层次化索引之后...0.751478 c 1 -0.241329 2 -1.945047 d 2 0.460786 3 -0.411931 dtype: float64 DataFrame的行列索引都可以使用层次化索引...Colorado Green Red Green a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11 我们可以创建层次化索引...,sort_index中的level指定了根据哪个索引级别进行排序,sum等汇总统计函数中的level参数指定了根据哪个索引级别进行汇总统计: frame.sort_index(level = 0) frame.sum
01 前言 我们经常让Excel表格数据与Pandas的DataFrame数据做类比学习,而在实际的应用中,我们发现,关于数据的选择是很重要的一部分。...因此,本篇文章就简单介绍几种Pandas数据选择的方法,用最少的知识点,解决最重要的问题。 02 loc和iloc 在对Pandas数据进行操作时,最常用的就是选择部分行和列。...首先为loc,这个根据行和列索引名称来进行选择,例如下面的数据。行索引就是0到6,列索引就是name、course和score。 ? 其用法为loc[行索引,列索引]。...03 布尔选择 为了选择符合某种条件的数据,就需要使用布尔选择,例如,我们要选择成绩大于80的数据,可用下面代码。 data[data['score'] > 80] ?...布尔选择有与或非,分别用&,|,~来实现,例如获取李四和王五的成绩单。
Pandas索引的基本属性 对10种单层索引的常用操作,文末有汇总的常见属性,建议收藏!...10种索引 快速回顾Pandas中10种单层索引的创建: pd.Index In [1]: import pandas as pd import numpy as np In [2]: # 指定类型和名称...Out[38]: True In [39]: s2.is_integer() Out[39]: True In [40]: s6.is_integer() Out[40]: False 属性汇总 对Pandas...需要注意的是针对行索引的属性同样适用于列属性columns,因为它们二者都是同属于Pandas中的index对象。...追加索引 s.ravel # 索引拉成一维 s.fillna # 填充缺失的索引 s.set_names("new_name") # 给索引重命名
今天我们来讨论 Pandas 中的 reset_index() 方法,包括为什么我们需要在 Pandas 中重置 DataFrame 的索引,以及我们应该如何应用该方法 在本文我们将使用 Kaggle...上的数据集样本 Animal Shelter Analytics 来作为我们的测试数据 Pandas 中的 Reset_Index() 是什么?...如果我们使用 Pandas 的 read_csv() 方法读取 csv 文件而不指定任何索引,则生成的 DataFrame 将具有默认的基于整数的索引,第一行从 0 开始,随后每行增加 1: import...pandas as pd import numpy as np df = pd.read_csv('Austin_Animal_Center_Intakes.csv').head() df Output...DataFrame 索引,并将旧索引转换为与旧索引同名的新列(或名称索引)。
Pandas DataFrame 提供了多种灵活的方式来索引数据,其中一种是使用多条件索引,它允许使用逻辑条件组合来选择满足所有条件的行。...解决方案可以使用以下步骤来实现多条件索引:首先,使用 isin() 方法来选择满足特定值的条件。isin() 方法接受一个列表或元组作为参数,并返回一个布尔值掩码,指示每个元素是否包含在列表或元组中。...然后,使用 ~ 运算符来否定布尔值掩码,以选择不满足该条件的行。最后,使用 & 运算符来组合多个布尔值掩码,以选择满足所有条件的行。...代码例子以下是使用多条件索引的代码示例:import pandas as pd# 生成一些数据mult = 10000fruits = ['Apple', 'Banana', 'Kiwi', 'Grape...然后,我们使用多条件索引来选择满足以下条件的行:水果包含在 fruitsInclude 列表中蔬菜不包含在 vegetablesExclude 列表中我们还选择了满足以下条件的行:水果包含在 fruitsInclude
重建索引会更改DataFrame的行列标签,以实现类似操作: 重新排序现有数据,以匹配一组新的标签 在没有标签数据的标签位置插入缺失(NA)标识 重建索引与其他对象对齐 重建一个对象的索引,轴被重建为和另一个对象相同...对齐操作列名应该匹配,无法对齐的列整列置为NAN。...填充时重新加注 reindex()可以添加参数method,指定填充方法: pad/ffill - 向前填充 bfill / backfill - 向后填充 nearest - 从最近的索引值填充...1.524848 3 -0.266685 -0.511846 1.524848 4 -0.266685 -0.511846 1.524848 5 -0.266685 -0.511846 1.524848 重建索引时的填充限制...limit参数在重建索引时提供填充的控制,限制指定连续匹配的次数: df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3
层次化索引是pandas的一项重要功能,它能使你在一个轴上有多个索引级别,也就是说,它能使你以低维度形式处理高维度数据,比如下面的代码: data = pd.Series(np.random.randn...], [1, 2, 3]], labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]]) 有了层次化索引之后...0.751478 c 1 -0.2413292 -1.945047 d 2 0.4607863 -0.411931 dtype: float64 DataFrame的行列索引都可以使用层次化索引...Colorado Green Red Green a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11 我们可以创建层次化索引...,sort_index中的level指定了根据哪个索引级别进行排序,sum等汇总统计函数中的level参数指定了根据哪个索引级别进行汇总统计: frame.sort_index(level = 0) frame.sum
这里列举下Pandas中常用的函数和方法,方便大家查询使用。...中的透视表 cut:将一组数据分割成离散的区间,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个...:绘制堆积图 pandas.DataFrame.plot.bar:绘制柱状图 pandas.DataFrame.plot.barh:绘制水平条形图 pandas.DataFrame.plot.box:绘制箱线图...pandas.DataFrame.plot.density:绘制核密度估计图 pandas.DataFrame.plot.hexbin:绘制六边形分箱图 pandas.DataFrame.plot.hist...:绘制直方图 pandas.DataFrame.plot.line:绘制线型图 pandas.DataFrame.plot.pie:绘制饼图 pandas.DataFrame.plot.scatter:
(也就是次级索引)重置为列, 原来的次级索引名作为列索引的编号为0(也就是列索引的顶级索引),这时该列的次级列索引为空。...df.where(df['Gender']=='M').dropna().head() [] 操作符--实际上是传入了布尔值索引。...df[df['Gender']=='M'].head() 第一个参数con为布尔条件,第二个参数other为填充值 df.where(df['Gender']=='M',np.random.rand(df.shape...='M',np.random.rand(df.shape[0],df.shape[1])).head() 3. query函数 query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、...注意传入的参数是带引号的 重复元素处理 1. duplicated方法 该方法返回了是否重复的布尔列表。
作者:闫钟峰,Datawhale优秀学习者 寄语:本文介绍了创建多级索引、多层索引切片、多层索引中的slice对象、索引层的交换等内容。 创建多级索引 1....但直接比较两个顺序不同的多重索引, 返回值是一个布尔值array, 并不如预期的那样。...多层索引切片 使用第一层的索引,会把该索引下的所有行都选中,除非该索引的二级索引只有一个,否则返回行数不会等于一行。...pd.IndexSlice['B':,df_s['D']['d']>0.3] 去掉切片 pd.IndexSlice[df_s['D']['d']>0.3] 最终,被传递给loc的是两个布尔值的Series...,和原始的Series对齐,然后根据布尔值是否为真筛选出最终的结果。
作者:Peter 编辑:Peter 大家好,我是Peter~ 今天给大家一片关于Pandas的基本文章:9种你必须掌握的Pandas索引。...在Pandas中创建合适的索引则能够方便我们的数据处理工作。 [e6c9d24ely1h0dalinfwhj20lu08e3yq.jpg] 官网学习地址:https://pandas.pydata.org/docs/reference/api/pandas.Index.html 下面通过实际案例来介绍Pandas中常见的...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: [e6c9d24ely1h0gmuv2wmmj20x60detah.jpg] pandas.Index...集合本身是无序的,所以最终的结果并不一定是按照给定的元素顺序: In 7: # 使用集合来创建,集合本身是无序的 pd.Index({"x","y","z"}) Out7: Index(['z', 'x
领取专属 10元无门槛券
手把手带您无忧上云