Python Pandas 中级教程:数据分组与聚合 Pandas 是数据分析领域中广泛使用的库,它提供了丰富的功能来对数据进行处理和分析。...在实际数据分析中,数据分组与聚合是常见而又重要的操作,用于对数据集中的子集进行统计、汇总等操作。本篇博客将深入介绍 Pandas 中的数据分组与聚合技术,帮助你更好地理解和运用这些功能。 1....数据聚合 5.1 常用聚合函数 Pandas 提供了丰富的聚合函数,如 sum、mean、count 等: # 对分组后的数据进行求和 sum_result = grouped['target_column...总结 通过学习以上 Pandas 中的数据分组与聚合技术,你可以更灵活地对数据进行分析和总结。这些功能对于理解数据分布、发现模式以及制定进一步分析计划都非常有帮助。...希望这篇博客能够帮助你更好地掌握 Pandas 中级数据分组与聚合的方法。
,必须明确三个要素:分组依据分组依据、数据来源数据来源、操作及其返回结果操作及其返回结果。...同时从充分性的角度来说,如果明确了这三方面,就能确定一个分组操作,从而分组代码的一般模式: df.groupby(分组依据)[数据来源].使用操作 例如第一个例子中的代码就应该如下: df.groupby...,调用的方法都来自于pandas中的groupby对象,这个对象定义了许多方法,也具有一些方便的属性。...分组之后, 如果走聚合, 每一组会对应一条记录, 当分组之后, 后续的处理不要影响数据的条目数, 把聚合值和每一条记录进行计算, 这时就可以使用分组转换(类似SQL的窗口函数) def my_zscore...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import pandas as pd data =
Pandas-18.分组 任何分组操作都涉及原始对象的以下操作之一: 分割对象 应用一个函数 结合的结果 将数据分组之后,每个自己可以执行以下种类的操作: 聚合 - 计算汇总统计 转换 - 执行特定于组的操作...过滤 以如下代码作为例子: import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings...obj.groupby(‘key’) - 单条件分组 obj.groupby([‘key1’,’key2’]) - 多条件分组 obj.groupby(key,axis=1) - 换轴分组 print...(df.groupby(['Team',"Year"])) # pandas.core.groupby.generic.DataFrameGroupBy object at 0x108aab278>...347.0 9 2.0 1007.0 350.5 10 0.5 1007.5 402.0 11 1.0 1008.5 345.0 ''' 过滤 filter()方法用于过滤数据
pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 一、Pandas数据分组与操作 在我们进行业务数据分析时,经常要对数据根据...Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。...2.1 分组 pandas实现分组操作的很简单,只需要把分组的依据(字段)放入groupby中,例如下面示例代码基于company分组: group = data.groupby("company")...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...加入我们需要获取各个公司年龄最大的员工的数据,可以通过以下代码实现: def get_oldest_staff(x): df = x.sort_values(by = 'age',ascending
Pandas分组统计 本文介绍的是pandas库中如何实现数据的分组统计: 不去重的分组统计,类似SQL中统计次数 去重的分组统计,类型SQL的统计用户数,需要去重 模拟数据1 本文案例的数据使用的是...模拟数据2 数据 import pandas as pd df = pd.DataFrame({ 'group': [1, 1, 2, 3, 3, 3, 4], 'param': ['...a', 'a', 'b', np.nan, 'a', 'a', np.nan] }) 分组统计方法1 直接使用groupby函数和nunique方法: ?...分组统计方法2 整体方法说明: ? 分步骤解释: 1、找出数据不是null的值 ? 2、统计para参数中的唯一值 ?...from_records方法 下面记录pandas中from_records方法的使用: 参数 DataFrame.from_records(data, index=None, exclude=None
利用panda便捷的对日志分组统计: #!...wz # @Email : 277215243@qq.com # @File : testpanda.py # @web : https://www.bthlt.com import pandas...name__ == '__main__': colname = ['time', 'id', 'qq', 'value', 'tag', 'proc', 'result'] rdtb = pandas.read_table
作者:耿远昊,Datawhale成员 Pandas做分析数据,可以分为索引、分组、变形及合并四种操作。...之前介绍过索引操作,现在接着对Pandas中的分组操作进行介绍:主要包含SAC含义、groupby函数、聚合、过滤和变换、apply函数。...在详细讲解每个模块之前,首先读入数据: import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col...分组依据 对于groupby函数而言,分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组。...变换(Transformation):即分组对每个单元的数据进行操作(如元素标准化):输入的是每组数据,输出是每组数据经过某种规则变换后的数据,不改变数据的维度。
分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:split...->apply->combine 拆分:进行分组的根据 应用:每个分组运行的计算规则 合并:把每个分组的计算结果合并起来 示例代码: import pandas as pd import...分组操作 groupby()进行分组,GroupBy对象没有进行实际运算,只是包含分组的中间数据 按列名分组:obj.groupby(‘label’) 示例代码: # dataframe根据key1....groupby(df_obj['key1']))) 运行结果: pandas.core.groupby.DataFrameGroupBy'> pandas.core.groupby.SeriesGroupBy...分组运算 对GroupBy对象进行分组运算or多重分组运算,如mean() 非数值数据不进行分组运算 示例代码: # 分组运算 grouped1 = df_obj.groupby('key1')
Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...让我们从将它与 pandas 一起导入开始。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始的意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用的都是「下采样」,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...2.2 利用groupby()+Grouper()实现混合分组 有些情况下,我们不仅仅需要利用时间类型列来分组,也可能需要包含时间类型在内的多个列共同进行分组,这种情况下我们就可以使用到Grouper(
准备工作 import numpy as np import pandas as pd %matplotlib inline 数据集team.xlsx下载地址: 链接:https://pan.quark.cn...type(list(df.groupby('team'))[0][1]) pandas.core.frame.DataFrame (三)通过循环查看各组的名称和组中的数据信息 也可以通过循环查看各组的名称和组中的数据信息...:在应用阶段(apply)是否把分组键加入到索引中,默认为True dropna:在分组时是否把键值为 NA 的行或列丢弃,默认为True 1、按字符串列表分组 按团队和姓名首字母分组,会产生多级索引。...df[['Q1','Q2']].groupby(df['team']).mean() (二)应用阶段:对数据进行必要的处理和变换 分组后,可以对组对象应用多种聚合函数,实现对每组数据的统计计算。...参考:https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html transform执行时是对分组块(Excel 筛选功能可以更直观看到每个分组块
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据分组的问题,问题如下: list1 = '电子税票号码 征收税务机关 社保经办机构 单位编号 费种 征收品目 征收子目 费款所属期...入(退)库日期 实缴(退)金额' list2 = list1.split(' ') path_file = r'C:\Users\Administrator\Desktop\提取数据.xlsx' df...【论草莓如何成为冻干莓】:那你这个想用concat来操作可能不太行,你直接分组写入到excel表吧。 【上海新年人】:我还特地把行标签给重新赋了值,想着打印在一张纸上,结果只有一行显示。...【论草莓如何成为冻干莓】:你分组写入就不用重新赋值了,可以直接写入。 【上海新年人】:哦,我想想。 如果你也有类似这种Python相关的小问题,欢迎随时来交流群学习交流哦,有问必答!
Pandas怎样实现groupby分组统计 groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数 import pandas as pd import numpy as np %matplotlib...0.837348 5 bar two -0.202403 0.701301 6 foo one -0.665189 -1.505290 7 foo three -0.498339 0.534438 一、分组使用聚合函数做数据统计...我们看到: groupby中的’A’变成了数据的索引列 因为要统计sum,但B列不是数字,所以被自动忽略掉 2、多个列groupby,查询所有数据列的统计 df.groupby(['A','B'])...two -1.093602 0.837348 6 foo one -0.665189 -1.505290 7 foo three -0.498339 0.534438 可以获取单个分组的数据...上进行的; 三、实例分组探索天气数据 fpath = ".
01 Pandas的基本排序 Pandas的主要数据结构有2个:DataFrame,Series,针对这两个类型的排序Demo如下: #coding=utf-8 import pandas as...one 2 4 1 5 通过多个索引进行排序: b a d c three 5 1 4 2 two 3 1 4 5 one 2 4 1 5 Pandas...03 Pandas分组 # data是DataFrame的实例 group_column1 = data.groupby('column1') 注意group_column1是一个Groupby类型的实例...04 Pandas组内排序 因为第二个元素是子DataFrame,所以: for group_name, group_eles in group_column1: group_eles.sort_values...(by='column2',ascending=False) 这样就实现了组内排序 以上总结了Pandas的基本排序,分组,组内排序,希望有用,更好的API请留言
Python数据分析pandas之分组统计透视表 大家好,我是架构君,一个会写代码吟诗的架构师...今天说一说Python数据分析pandas之分组统计透视表,希望能够帮助大家进步!!!...数据聚合统计 Padans里的聚合统计即是应用分组的方法对数据框进行聚合统计,常见的有min(最小)、max(最大)、avg(平均值)、sum(求和)、var()、std(标准差)、百分位数、中位数等。...数据框概览 可以通过describe方法查看当前数据框里数值型的统计信息,主要包括条数、均值、标准差、最小值、25分位数、50分位数、75分位数、最大值方面的信息。...如果是查看某列的统计信息,在数据框下加“.”列名即可。
小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 刚才碰到一个非常简单的需求: ? 但是我发现大部分人在做这个题的时候,代码写的异常复杂。...首先读取数据: import pandas as pd df = pd.read_excel("练习.xlsx", index_col=0) df 结果: ?...为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。 groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组。...可以看到,非常简单,仅8行以内的代码已经解决这个问题,剩下的只需在保存到excel时设置一下单元格格式即可,具体设置方法可以参考:Pandas指定样式保存excel数据的N种姿势 简单讲解一下吧: df.columns.str...,axis=1则指定了groupby按列进行分组而不是默认的按行分组。
python pandas 分组后 列上移 强烈推介IDEA2020.2破解激活...,IntelliJ IDEA 注册码,2020.2 IDEA 激活码 import pandas as pd train_data = pd.read_csv(filepath_or_buffer='E
pandas的groupby是数据处理中一个非常强大的功能。虽然很多同学已已经非常熟悉了,但有些小技巧还是要和大家普及一下的。 为了给大家演示,我们采用一个公开的数据集进行说明。.../iris.csv') 随机采样5条,数据是长这样子的。...在这个数据里,这里我们就以species进行分组举例。 首先,以species分组创建一个groupby的object。...也就是说,我们想重置分组索引以使其成为正常的行和列。 第一种方法可能大家常用,就是通过reset_index()让乱序索引重置。...推荐阅读 pandas进阶宝典 数据挖掘实战项目 机器学习入门
groupby 是pandas 中非常重要的一个函数, 主要用于数据聚合和分类计算. 其思想是“split-apply-combine”(拆分 - 应用 - 合并)....型数据 pandas分组和聚合详解 官方文档 DataFrame....默认是情况下会对数据进行分组,关闭可以提高性能 group_keys : bool, default True by和as_index最常用 返回值 DataFrameGroupBy or SeriesGroupBy...import numpy as np import pandas as pd import matplotlib.pyplot as plt # 如何读取csv数据,对数据用|分开 url = "https...(需要按照职业进行分组)并按照平均年龄从大到小排序?(分组之后对年龄求平均再排序) 分别找出男人和女人每种职业的人数?(按照男女分组) 更进一步, 如何找出男人和女人在不同职业的平均年龄?
一、前言 前几天在Python最强王者交流群【郎爱君】问了一个Pandas的问题,报错结果如下图所示。...下图是代码: 下图是报错信息: 二、实现过程 这个问题倒是不难,不经常使用分组的小伙伴可能很难看出来问题,但是对于经常使用的大佬来说,这个问题就很常见了。...这篇文章主要盘点了一个pandas的基础问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。