01
MySQL和Pandas做分组聚合的对比说明
1)都是用来处理表格数据
不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...业界处理像excel那样的二维表格数据,通常有如下两种风格:
* DSL风格:使用面向对象的方式来操作,pandas就是采用这种方式,通俗说就是“语法顺序和执行顺序一致”。...;
注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作;
03
groupby分组对象的相关操作...2)groupby分组对象的常用方法或属性。...3)使用for循环打印groupby()分组对象中每一组的具体数据
x = {"name":["a","a","b","b","c","c","c"],"num":[2,4,0,5,5,10,15]}