首页
学习
活动
专区
圈层
工具
发布

数据处理 | pandas-超常用的数据提取操作方法汇总

pandas是python数据分析必备工具,它有强大的数据清洗能力,往往能用非常少的代码实现较复杂的数据处理 今天,鸟哥总结了pandas筛选数据的15个常用技巧,主要包括5个知识点: 1.比较运算:...,=,>) 6.apply和isin函数 下面以超市运营数据为例,给大家逐个讲解 首先读取数据: import pandas as pd data=pd.read_excel('超市运营数据模板...2.筛选单价小于等于10元的运营数据 ③第一种方法,用比较运算符‘<=’: data[data.单价<=10] ?...3.筛选销量大于2000的运营数据 ⑤第一种方法,用比较运算符‘>=’: data[data.销量>2] ?...⑥第二种方法,用比较函数'ge': data[data['销量'].ge(2)] ? 4.筛选除门店'CDXL'外的运营数据 ⑦第一种方法,用比较运算符‘!=’: data[data.门店编号!

87120
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    mSphere: OptiFit从已有OTUs中添加新测序数据的方法

    现有的基于参考数据库方法会产生一致的OTU,但只考虑OTU中每个序列与单个参考序列的相似性,导致效果不如de novo方法。...结果比只基于参考参考数据库要好。当使用分割数据集策略时,OptiFit能够以更快的速度产生与OptiClust相似的质量OTU。...de novo聚类的一个局限性是,当新的序列添加到数据集时,会产生不同的OTU分配结果,这使得很难使用de novo聚类来比较不同研究之间的OTU。...通常在VSEARCH中使用97%相似性的具有代表性的全长序列的Greengenes数据集作为参考。然后根据查询序列与参考序列的相似性将查询序列聚类成OTU。...方法 OptiFit利用OptiClust所采用的迭代分配序列到OTU的方法,以产生尽可能高质量的OTU,并将该方法扩展到基于参考数据库的聚类。

    95720

    手把手教你使用Pandas从Excel文件中提取满足条件的数据并生成新的文件(附源码)

    2.xlsx') 方法二:把日期中的分秒替换为0 import pandas as pd excel_filename = '数据.xlsx' df = pd.read_excel(excel_filename...2.xlsx') 方法五:对日期时间进行重新格式,并按照新的日期时间删除 import pandas as pd excel_filename = '数据.xlsx' df = pd.read_excel...(excel_filename) # 方法五:对日期时间进行重新格式,并按照新的日期时间删除重复项(会引入新列) df['new'] = df['SampleTime'].dt.strftime('%...,并遍历单元格获取值,以列表形式写入新表 for row in row_lst: data_lst = [] for cell in sheet[row]: data_lst.append...这篇文章主要分享了使用Pandas从Excel文件中提取满足条件的数据并生成新的文件的干货内容,文中提供了5个方法,行之有效。

    4.7K50

    利用Pandas数据过滤减少运算时间

    我创建了一个名为mesh的numpy数组,它保存了我最终想要得到的等间隔Span数据。最后,我决定对数据帧进行迭代,以获取给定的时间戳(代码中为17300),来测试它的运行速度。...代码中for循环计算了在每个增量处+/-0.5delta范围内的平均Elevation值。我的问题是: 过滤数据帧并计算单个迭代的平均Elevation需要603毫秒。...:将数据转换为dataframe,并添加一个偏移的条目,使dataframe中的每个条目都代表新的均匀Span的一个步骤。...:将数据导入sqlite数据库,并使用SQL进行join操作。...这些技巧可以帮助大家根据特定条件快速地筛选出需要的数据,从而减少运算时间。根据大家的具体需求和数据集的特点,选择适合的方法来进行数据过滤。

    85710

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的数据帧显示每个学生的平均分数。...语法 list_name.append(element) 在这里,append() 函数是一个列表方法,用于将元素添加到list_name的末尾。它通过将指定的元素添加为新项来修改原始列表。

    3.6K30

    如何通过Maingear的新型Data Science PC将NVIDIA GPU用于机器学习

    快速 RAPIDS是一套开放源代码库,可与流行的数据科学库和工作流集成在一起以加快机器学习的速度[3]。 一些RAPIDS项目包括cuDF(类似于Pandas的数据框操作库)。...cuDF:数据帧操作 cuDF提供了类似Pandas的API,用于数据帧操作,因此,如果知道如何使用Pandas,那么已经知道如何使用cuDF。..., 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(df) 也可以做相反的事情,将cuDF数据帧转换为pandas数据帧: import cudf...拥有一台可以改善这一点的PC和工具确实可以加快工作,并帮助更快地在数据中发现有趣的模式。想象得到一个40 GB的csv文件,然后只需将其加载到内存中即可查看其内容。...RAPIDS工具为机器学习工程师带来了深度学习工程师已经熟悉的GPU处理速度的提高。为了生产使用机器学习的产品,需要进行迭代并确保拥有可靠的端到端流水线,并且使用GPU执行它们将有望改善项目输出。

    2.4K40

    这几个方法颠覆你对Pandas缓慢的观念!

    ▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?...apply函数逻辑添加新的特征,如下: >>> # 不赞同这种操作 >>> @timeit(repeat=3, number=100) ... def apply_tariff_loop(df): .....实际上可以通过pandas引入itertuples和iterrows方法可以使效率更快。这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas有很多可选性,几乎总有几种方法可以从A到B。请注意这一点,比较不同方法的执行方式,并选择在项目环境中效果最佳的路线。

    3.8K20

    还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    ▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?...apply函数逻辑添加新的特征,如下: >>> # 不赞同这种操作 >>> @timeit(repeat=3, number=100) ... def apply_tariff_loop(df): .....实际上可以通过pandas引入itertuples和iterrows方法可以使效率更快。这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...Pandas有很多可选性,几乎总有几种方法可以从A到B。请注意这一点,比较不同方法的执行方式,并选择在项目环境中效果最佳的路线。

    4.5K10

    资源 | Pandas on Ray:仅需改动一行代码,即可让Pandas加速四倍

    下面,我们会展示一些性能对比,以及我们可以利用机器上更多的资源来实现更快的运行速度,甚至是在很小的数据集上。 转置 分布式转置是 DataFrame 操作所需的更复杂的功能之一。...Dask 为 Pandas 用户提供精细调整的定制,而 Pandas on Ray 则提供一种以最少的工作量实现更快性能的方法,且不需要多少分布式计算的专业知识。...这个调用在 Dask 的分布式数据帧中是不是有效的? 我什么时候应该重新分割数据帧? 这个调用返回的是 Dask 数据帧还是 Pandas 数据帧?...使用 Pandas on Ray 的时候,用户看到的数据帧就像他们在看 Pandas 数据帧一样。...尽管多线程模式让一些计算变得更快,但是一个单独的 Python 进程并不能利用机器的多个核心。 或者,Dask 数据帧可以以多进程模式运行,这种模式能够生成多个 Python 进程。

    4.3K30

    pandas 提速 315 倍!

    ,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下: ?...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。...到目前为止,使用pandas处理的时间上基本快达到极限了!只需要花费不到一秒的时间即可处理完整的10年的小时数据集。 但是,最后一个其它选择,就是使用 NumPy,还可以更快!

    3.6K20

    Pandas 数据分析技巧与诀窍

    它将分为以下几点: 1、在Pandas数据流中生成数据。 2、数据帧内的数据检索/操作。...2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...要直接更改数据帧而不返回所需的数据帧,可以添加inplace=true作为参数。 出于解释的目的,我将把数据框架称为“数据”——您可以随意命名它。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...这些数据将为您节省查找自定义数据集的麻烦。 此外,数据可以是任何首选大小,可以覆盖许多数据类型。此外,您还可以使用上述的一些技巧来更加熟悉Pandas,并了解它是多么强大的一种工具。

    12.7K40

    Pandas 学习手册中文第二版:1~5

    原地修改序列 Series的就地修改是一个有争议的话题。 如果可能,最好执行返回带有新Series中表示的修改的新Series的操作。 但是,如果需要,可以更改值并就地添加/删除行。...具体而言,在本章中,我们将涵盖以下主题: 根据 Python 对象,NumPy 函数,Python 字典,Pandas Series对象和 CSV 文件创建DataFrame 确定数据帧大小 指定和操作数据帧中的列名...-2e/img/00195.jpeg)] 使用[]和.insert()添加新列 可以使用[]运算符将新列添加到数据帧。...然后,pandas 将新的Series与副本DataFrame对齐,并将其添加为名为RoundedPrice的新列。 新列将添加到列索引的末尾。 .insert()方法可用于在特定位置添加新列。...附加过程将返回一个新的DataFrame,并首先添加来自原始DataFrame的数据,然后再添加第二行的数据。 追加不会执行对齐,并且可能导致索引标签重复。

    11.6K10

    Python入门之数据处理——12种有用的Pandas技巧

    它作为一种编程语言提供了更广阔的生态系统和深度的优秀科学计算库。 在科学计算库中,我发现Pandas对数据科学操作最为有用。...Pandas,加上Scikit-learn提供了数据科学家所需的几乎全部的工具。本文旨在提供在Python中处理数据的12种方法。此外,我还分享了一些让你工作更便捷的技巧。...例如,我们想获得一份完整的没有毕业并获得贷款的女性名单。这里可以使用布尔索引实现。你可以使用以下代码: ? ? # 2–Apply函数 Apply是一个常用函数,用于处理数据和创建新变量。...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...解决这些问题的一个好方法是创建一个包括列名和类型的CSV文件。这样,我们就可以定义一个函数来读取文件,并指定每一列的数据类型。

    6.4K50

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...1.0.0rc0 使用 DataFrame.info 更好地自动汇总数据帧 我最喜欢的新功能是改进后的 DataFrame.info (http://dataframe.info/) 方法。...DataFrame.to_markdown 方法,把数据帧导出到 Markdown 表格中。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。

    4.4K10

    想让pandas运行更快吗?那就用Modin吧

    本质上,用户只是想让 Pandas 运行得更快,而不是为了特定的硬件设置而优化其工作流。这意味着人们希望在处理 10KB 的数据集时,可以使用与处理 10TB 数据集时相同的 Pandas 脚本。...pandas API 由于 Pandas 具有这么多种操作,Modin 采用了一种数据驱动的方法。也就是说 Modin 的创造者找出了人们最常用的 Pandas 操作。...根据研究,这代表了 93% 的使用场景。 Ray Modin 利用 Ray 以毫不费力的方式加速 Pandas 的 notebook、脚本和程序库。...使用方法 导入 Modin 封装了 Pandas,并透明地分发数据和计算任务,它通过修改一行代码就加速了 Pandas 的工作流。...当使用默认的 Pandas API 时,你将看到一个警告: dot_df = df.dot(df.T) ? 当计算完成后,该操作会返回一个分布式的 Modin 数据帧。

    2.3K20

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...1.0.0rc0 使用 DataFrame.info 更好地自动汇总数据帧 我最喜欢的新功能是改进后的 DataFrame.info (http://dataframe.info/) 方法。...DataFrame.to_markdown 方法,把数据帧导出到 Markdown 表格中。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。

    2.7K20
    领券