Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。
Pandas是Python中用于数据处理和数据分析的开源库,2008年由金融数据分析师Wes McKinney开发。开发Pandas的初衷是为了方便进行金融数据分析,现在Pandas的功能越来越丰富,应用范围也越来越广,几乎所有需要做数据处理的地方都可以派上用场。
我们在使用pandas读取文件数据时,可以设定初始的索引。 这里我用之前 爬取过的 拉勾网产品经理岗位数据进行演示如下:
在数据处理时,经常会因为index报错而发愁。不要紧,本次来和大家聊聊pandas中处理索引的几种常用方法。
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱。
默认情况下,分组会将分组列编程index索引。但是很多情况下,我们不希望分组列变成索引,因为可能有些计算或者判断逻辑还是需要用到该列的。因此,我们需要设置一下让分组列不成为索引,同时也能完成分组的功能。
pandas中最常用的数据结构是DataFrame,而DataFrame相较于嵌套list或者二维numpy数组更好用的原因之一在于其提供了行索引和列名。本文主要介绍行索引的几种变换方式,包括rename与reindex、index.map、set_index与reset_index、stack与unstack等。
如果您使用Python作为数据处理的语言,那么pandas很可能是你代码中使用最多的库之一。pandas的关键数据结构是DataFrame,这是一个类似电子表格的数据表,由行和列组成。在处理dataframe时,我们经常需要处理索引,这可能很棘手。在本文中,让我们回顾一些关于用pandas处理索引的技巧。
本文,我们将通过几步演示如何用Pandas的read_html函数从HTML页面中抓取数据。首先,一个简单的示例,我们将用Pandas从字符串中读入HTML;然后,我们将用一些示例,说明如何从Wikipedia的页面中读取数据。
数据预处理是数据分析过程中不可或缺的一环,它的目的是为了使原始数据更加规整、清晰,以便于后续的数据分析和建模工作。在Python数据分析中,数据预处理通常包括数据清洗、数据转换和数据特征工程等步骤。
这道题最简单的解法,相信大部分用过pandas的朋友都会,林胖也马上发出了自己的答案:
两个Series之间计算,如果Series元素个数相同,则将两个Series对应元素进行计算
Pandas 单独索引 pd的默认索引是从零开始的数字,把一列设置为新的索引可以更便于操作 无header 有的表格可能没有header,pandas默认第一行为header,这种情况pandas会读取不到第一行数据 data2pd.read_csv("test.cvs",header=None)#不把第一行作列属性 set_index # 将列head变为索引,这样可以很方便的提取时间 df = data.set_index('故障发生时间') df1 = df['2020-03-01':'2
今天我们学习使用Pandas的DataFrame进行加载数据、查看数据的开头、结尾、设置DataFrame的索引列、列的数据转换等操作,接下来开始:
量化投资与机器学习公众号为全网读者带来的Backtrader系列,自推出以来收获无数好评!我们是真的在用心做这个内容。
学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法。最常见的数据分析是使用电子表格、SQL或pandas 完成的。使用 Pandas 的一大优点是它可以处理大量数据并提供高性能的数据操作能力。
谈到DataFrame数据的合并,一般用到的方法有concat、join、merge。 这里就介绍concat方法,以下是函数原型。
注意 取index多级索引:构造的时候是zip对,所以这样取 取column多级索引:构造的时候是第一层和第一层数量一致,取的时候df.iloc[1:]把第一行去掉再去 pd.to_datetime()很重要,可以把str日期转化为datetime 也可以这样取 ix 可以自适应loc iloc 但不建议用 apply 可赋值也可过滤 新增列直接 df['列名'] = data 就可以 删除列 df.remove('列名'),插入用appenf/insert 取列 set_index 这个方法很有用,可将c
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2
Panel,Dataframe,Series。 其中Series表示一维数据,Dataframe表示二维数据,Panel表示三维数据。 但实际上,当数据高于二维时,我们一般用包含多层级索引的Dataframe进行表示,而不是使用Panel。 原因是使用多层级索引展示数据更加直观,操作数据更加灵活,并且可以表示3维,4维乃至任意维度的数据。
数据可视化动画还在用Excel做?现在一个简单的Python包就能分分钟搞定!而且生成的动画也足够丝滑,效果是酱紫的:
而创建这种动画,输入的数据必须是pandas数据结构(如下),其中将时间列设置为索引,换句话说索引代表的是自变量。
==值得注意的是,drop函数不会修改原数据,如果想直接对原数据进行修改的话,可以选择添加参数inplace = True或用原变量名重新赋值替换。==
成功爬取到我们所需要的数据以后,接下来应该做的是对资料进行清理和转换, 很多人遇到这种情况最自然地反应就是“写个脚本”,当然这也算是一个很好的解决方法,但是,python中还有一些第三方库,像Numpy,Pandas等,不仅可以快速简单地清理数据,还可以让非编程的人员轻松地看见和使用你的数据。接下来就让我们一起学习使用Pandas!
我们在使用pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。
本文介绍基于Python语言,读取一个不同的行表示不同的日期的.csv格式文件,将其中缺失的日期数值加以填补;并用0值对这些缺失日期对应的数据加以填充的方法。
df.isnull() df的空值为True df.notnull() df的非空值为True
工作的具体内容是需要把一个二维表格转成一维表格。将问题简化抽象,大致是这么个意思(数据为示例):
数据科学家花了大量的时间清洗数据集,并将这些数据转换为他们可以处理的格式。事实上,很多数据科学家声称开始获取和清洗数据的工作量要占整个工作的80%。
在许多应用程序中,数据可能分布在许多文件或数据库中,或者以不便于分析的形式排列。本章重点介绍帮助组合、连接和重新排列数据的工具。
Pandas Series.reset_index()函数的作⽤是:⽣成⼀个新的DataFrame或带有重置索引的Series。
在很多应用中,数据可能分布在多个文件或数据库中,或者以一些不易分析的格式进行排列,因此本章介绍数据规整。
1. Creating, Reading and Writing 1.1 DataFrame 数据框架 创建DataFrame,它是一张表,内部是字典,key :[value_1,...,value_n] #%% # -*- coding:utf-8 -*- # @Python Version: 3.7 # @Time: 2020/5/16 21:10 # @Author: Michael Ming # @Website: https://michael.blog.csdn.net/ # @File: pa
版权声明:本文为博主原创文章,允许转载,请标明出处。 https://blog.csdn.net/qwdafedv/article/details/82706521
寄语:本文对Pandas基础内容进行了梳理,从文件读取与写入、Series及DataFrame基本数据结构、常用基本函数及排序四个模块快速入门。同时,文末给出了问题及练习,以便更好地实践。
pandas 是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。
Polars[2]是Pandas最近的转世(用Rust编写,因此速度更快,它不再使用NumPy的引擎,但语法却非常相似,所以学习 Pandas 后对学习 Polars 帮助非常大。
写时复制 将成为 pandas 3.0 的新默认值。这意味着链式索引永远不会起作用。因此,SettingWithCopyWarning将不再必要。有关更多上下文,请参见此部分。我们建议打开写时复制以利用改进
寄语:本文对单级索引中的loc、iloc、[]三种方法进行了详细的阐述。同时,对布尔索引,快速标量索引方式、区间索引方式做了详细介绍。
本文用到的数据来源于网易财经,具体下载方式可以参考上一篇文章:Pandas知识点-DataFrame数据结构介绍。
Pine 发自 凹非寺 量子位 | 公众号 QbitAI 数据可视化动画还在用Excel做? 现在一个简单的Python包就能分分钟搞定! 而且生成的动画也足够丝滑,效果是酱紫的: 这是一位专攻Python语言的程序员开发的安装包,名叫Pynimate。 目前可以直接通过PyPI安装使用。 使用指南 想要使用Pynimate,直接import一下就行。 import pynimate as nim 输入数据后,Pynimate将使用函数Barplot()来创建条形数据动画。 而创建这种动画,输入的数据
Attitude is a little thing that makes a big difference.
不管是业务数据分析 ,还是数据建模。数据处理都是及其重要的一个步骤,它对于最终的结果来说,至关重要。
这是一个在过去几年里反复出现在我脑海中的问题。很长一段时间以来,情景喜剧一直是我的首选。
本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、循环和条件、类。 第3天了解了Numpy这个工具库。 第4天初步了解了Pandas这个库 原文复习(点击查看): 第1天:谁来给我讲讲Python? 第2天:再接着介绍一下Python呗 【第3天:Numpy你好】 【第4天:欢迎光临Pandas】 【第四天的补充】 今天将带来第5天的学习日记。 目录如下: 前言 一、描述性统计 1. 加总 2
也可以使用loc或iloc来访问index或某个固定位置,其中loc是访问index或columns的名称,而iloc访问的是序号
领取专属 10元无门槛券
手把手带您无忧上云