首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 Python 按行和按列对矩阵进行排序

在本文中,我们将学习一个 python 程序来按行和按列对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和按列排序。...创建一个函数 sortMatrixRowandColumn() 通过接受输入矩阵 m(行数)作为参数来对矩阵行和列进行排序。...调用上面定义的sortMatrixRowandColumn()函数,方法是将输入矩阵,m值传递给它,对矩阵行和列进行排序。...通过调用上面定义的 printingMatrix() 函数按行和按列排序后打印生成的输入矩阵。...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)按行对矩阵进行排序。

6.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《Pandas Cookbook》第02章 DataFrame基本操作1. 选取多个DataFrame列2. 对列名进行排序3. 在整个DataFrame上操作4. 串联DataFrame方法5. 在

    对列名进行排序 # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ?...Series再使用sum,返回整个DataFrame的缺失值的个数,返回值是个标量 In[32]: movie.isnull().sum().sum() Out[32]: 2654 # 判断整个DataFrame...有没有缺失值,方法是连着使用两个any In[33]: movie.isnull().any().any() Out[33]: True 原理 # isnull返回同样大小的DataFrame,但所有的值变为布尔值...= np.nan Out[52]: True # college_ugds_所有值和.0019比较,返回布尔值DataFrame In[53]: college = pd.read_csv('data...# 用DataFrame和DataFrame进行比较 In[55]: college_self_compare = college_ugds_ == college_ugds_ college_self_compare.head

    4.6K40

    Pandas Sort:你的 Python 数据排序指南

    在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...按升序按索引排序 您可以根据行索引对 DataFrame 进行排序.sort_index()。像在前面的示例中一样按列值排序会重新排序 DataFrame 中的行,因此索引变得杂乱无章。...您可以.set_index()在 pandas 文档中阅读有关使用的更多信息。 按索引降序排序 对于下一个示例,您将按索引按降序对 DataFrame 进行排序。

    14.3K00

    python对100G以上的数据进行排序,都有什么好的方法呢

    在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...按升序按索引排序 您可以根据行索引对 DataFrame 进行排序.sort_index()。像在前面的示例中一样按列值排序会重新排序 DataFrame 中的行,因此索引变得杂乱无章。...您可以.set_index()在 pandas 文档中阅读有关使用的更多信息。 按索引降序排序 对于下一个示例,您将按索引按降序对 DataFrame 进行排序。...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(

    10K30

    Pandas数据排序:单列与多列排序详解

    引言 在数据分析和处理中,对数据进行排序是常见的需求。Pandas库提供了强大的功能来实现数据的排序操作,无论是单列排序还是多列排序,都能轻松应对。...本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...解决方案: sorted_df_reset = df.sort_values(by='age').reset_index(drop=True) 多列排序 基本概念 多列排序是指根据多个列的数据值对DataFrame...ascending=[True, False]) print("\n按'age'和'score'两列排序的结果:") print(multi_sorted_df) 常见问题与解决方法 不同列的排序方向不一致...使用inplace=True直接在原DataFrame上进行排序,避免创建副本。 总结 通过本文的介绍,我们了解了Pandas中单列和多列排序的基本用法、常见问题及其解决方案。

    24110

    Pandas知识点-排序操作

    为了方便后面进行排序操作,只读取了数据中的前十行,并删除了一些列,设置“日期”和“收盘价”为索引。 ? 读取的原始数据如上图,本文基于这些数据来进行排序操作。 二、DataFrame排序操作 1....按索引进行排序 ? sort_index(): 对DataFrame按索引排序。 一般情况下DataFrame的行索引都是单列索引,即数值型索引或指定的某一列作为行索引。...inplace: 在排序时,默认返回一个新的DataFrame,inplace参数默认为False,将inplace参数设置成True则对原DataFrame进行排序,直接修改了数据本身,无返回值。...按指定列进行排序 在按列排序前,请特别注意:按行索引排序和按列排序都是对行进行排序,按列索引排序和按行排序都是对列进行排序。避免被绕晕了。 ?...inplace参数用于设置是否对原数据修改,对原数据修改时没有返回值,不能链式调用。kind参数用于设置使用的排序算法,在按多重索引排序和按多个列排序时无效。

    1.9K30

    Python数据分析笔记——Numpy、Pandas库

    (3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...Pandas基本功能 1、重新索引 Pandas对象的一个方法就是重新索引(reindex),其作用是创建一个新的索引,pandas对象将按这个新索引进行排序。对于不存在的索引值,引入缺失值。...(索引相同的进行算数运算,索引不同的被赋予空值) 4、排序和排名 根据某种条件对数据集进行排序。...(1)Series数据结构的排序和排名 a、按索引值进行排序 b、按值进行排序 默认情况下,排序是按升序排列的,但也可通过ascending=False进行降序排列。...obj.rank() (2)DataFrame数据结构的排序和排名 按索引值进行排列,一列或多列中的值进行排序,通过by将列名传递给sort_index. 5、缺失数据处理 (1)滤出缺失数据 使用data.dropna

    6.4K80

    最全面的Pandas的教程!没有之一!

    我们可以用加减乘除(+ - * /)这样的运算符对两个 Series 进行运算,Pandas 将会根据索引 index,对响应的数据进行计算,结果将会以浮点数的形式存储,以避免丢失精度。 ?...重置 DataFrame 的索引 如果你觉得当前 DataFrame 的索引有问题,你可以用 .reset_index() 简单地把整个表的索引都重置掉。...分组统计 Pandas 的分组统计功能可以按某一列的内容对数据行进行分组,并对其应用统计函数,比如求和,平均数,中位数,标准差等等… 举例来说,用 .groupby() 方法,我们可以对下面这数据表按...排序 如果想要将整个表按某一列的值进行排序,可以用 .sort_values() : ? 如上所示,表格变成按 col2 列的值从小到大排序。...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。

    26K64

    Pandas从入门到放弃

    这些基本操作都建立在Pandas的基础数据结构之上。Pandas有两大基础数据结构:Series(一维数据结构)和DataFrame(二维数据结构)。...,获取的永远是列,索引只会被认为是列索引,而不是行索引;相反,第二种方式没有此类限制,故在使用中容易出现问题。...①数据排序 在处理带时间戳的数据时,如地铁刷卡数据等,有时需要将数据按照时间顺序进行排列,这样数据预处理时能更加方便,或者按照已有的索引给数据进行重新排序,DataFrame提供了这类方法。...默认通过行索引,按照升序排序 newdfs1 = dfs.sort_index() newdfs1 按照值的降序排序,可以通过df.sort_values(列索引, ascending = False)...使用file.describe()对所有数字列进行统计,返回值中统计了个数、均值、标准差、最小值、25%-75%分位数、最大值 file.describe() 通过file[].mean()或file[

    9610

    Python 数据处理:Pandas库的使用

    每个索引都有一些方法和属性,它们可用于设置逻辑并回答有关该索引所包含的数据的常见问题。...: obj['b':'c'] = 5 print(obj) 用一个值或序列对DataFrame进行索引其实就是获取一个或多个列: import pandas as pd data = pd.DataFrame...---- 2.6 算术运算和数据对齐 Pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集。...要对行或列索引进行排序(按字典顺序),可使用sort_index方法,它将返回一个已排序的新对象: import pandas as pd obj = pd.Series(range(4), index...但也可以降序排序: print(frame.sort_index(axis=1, ascending=False)) 若要按值对Series进行排序,可使用其sort_values方法: import

    22.8K10

    用 Pandas 进行数据处理系列 二

    a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values...('a',inplace=True,ascending=True) , inplace 表示排序的时候是否生成一个新的 dataFrame , ascending=True 表示升序,默认为升序,如果存在缺失的补值...df.set_index('id') 按照特定列的值排序 df.sort_values(by=['age']) 按照索引列排序 df.sort_index() 如果 pr 列的值大于 3000 , group...[(df['city'] == 'beijing') & (df['pr'] >= 4000), 'sign'] = 1 对 category 字段的值依次进行分列,并创建数据表,索引值 df 的索引列...loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index

    8.2K30

    猿创征文|数据导入与预处理-第3章-pandas基础

    =['A', 'B', 'C']) print(df1 + df2) # DataFrame对象之间的数据自动按照列和索引(行标签)对齐 输出为: /排序 排序1 - 按值排序 .sort_values...pandas中可以使用sort_values()方法将Series、DataFrmae类对象按值的大小排序。....sort_index pandas中提供了一个sort_index()方法,使用sort_index()方法可以让Series类对象DataFrame类对象按索引的大小进行排序。...0.02 In [22]: new_df = df.reindex(new_index, fill_value='missing') new_df # 通过fill_value参数,使用指定值对缺失值进行填充...1.5.3.1 使用单层索引访问数据 无论是创建Series类对象还是创建DataFrame类对象,根本目的在于对Series类对象或DataFrame类对象中的数据进行处理,但在处理数据之前,需要先访问

    14K20

    python数据科学系列:pandas入门详细教程

    切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...与[ ]访问类似,loc按标签访问时也是执行范围查询,包含两端结果 at/iat,loc和iloc的特殊形式,不支持切片访问,仅可以用单个标签值或单个索引值进行访问,一般返回标量结果,除非标签值存在重复...4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。...sort_index、sort_values,既适用于series也适用于dataframe,sort_index是对标签列执行排序,如果是dataframe可通过axis参数设置是对行标签还是列标签执行排序...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。

    15K20

    Pandas数据分析包

    (2) Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。...对DataFrame进行索引其实就是获取一个或多个列 为了在DataFrame的行上进行标签索引,引入了专门的索引字段ix。 ?...: '%.2f' % x print(frame.applymap(_format)) print(frame['e'].map(_format)) 排序和排名 对行或列索引进行排序 对于DataFrame...,根据任意一个轴上的索引进行排序 可以指定升序降序 按值排序 对于DataFrame,可以指定按值排序的列 rank函数 # -*- coding: utf-8 -*- import numpy as...pandas的数据处理常用方法总结 Series和DataFrame排序 Series排序 sort_values根据值大小排序,默认是升序 sort_index 根据索引排序 DataFrame排序

    3.1K71

    机器学习测试笔记(2)——Pandas

    、不同索引的数据轻松地转换为 DataFrame 对象; 基于智能标签,对大型数据集进行切片、花式索引、子集分解等操作; 直观地合并(merge)、**连接(join)**数据集; 灵活地重塑(reshape...): print("按轴排序:\n",df.sort_index(axis=1,ascending=False)) print("按值排序:\n",df.sort_values(by='...B',ascending=False)) 按轴排序: B A 3 2 1 4 4 3 5 6 5 6 8 7 按值排序: A B 6 7 8 5 5 6 4 3...4 3 1 2 sort_values by:指定列名(axis=0或’index’)或索引值(axis=1或’columns’) axis:若axis=0或’index’,则按照指定列中数据大小排序...;若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0 ascending:是否按指定列的数组升序排列,默认为True,即升序排列 inplace:是否用排序后的数据集替换原来的数据

    1.5K30
    领券