首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Opencv(2D)中点的重投影误差计算

在OpenCV(2D)中,点的重投影误差计算是用于评估相机标定的准确性和精度的一种方法。重投影误差是指将已知的三维点通过相机的内外参数投影到图像平面上,然后计算投影点与对应的图像上的二维点之间的距离。

重投影误差计算的步骤如下:

  1. 首先,进行相机标定,获取相机的内外参数。相机内参数包括焦距、主点坐标和畸变系数等,而外参数包括旋转矩阵和平移向量。
  2. 然后,通过已知的三维点和相机的内外参数,将三维点投影到图像平面上,得到对应的二维点。
  3. 接下来,计算投影点与对应的图像上的二维点之间的距离,这个距离即为重投影误差。

重投影误差的计算可以帮助我们评估相机标定的准确性。较小的重投影误差表示相机标定的结果较为精确,而较大的重投影误差则表示相机标定存在一定的误差。

OpenCV提供了计算重投影误差的函数cv::projectPoints,该函数可以根据相机的内外参数将三维点投影到图像平面上,并计算重投影误差。具体使用方法可以参考OpenCV官方文档中的说明:cv::projectPoints

在使用OpenCV进行相机标定和重投影误差计算时,可以结合腾讯云的相关产品进行应用和部署。例如,可以使用腾讯云的云服务器(CVM)来搭建相机标定的计算环境,使用腾讯云的对象存储(COS)来存储标定所需的图像数据,使用腾讯云的人工智能服务(AI)来进行图像处理和分析等。具体的产品和服务选择可以根据实际需求进行灵活配置和组合。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 从单幅图像到双目立体视觉的3D目标检测算法(长文)

    经典的计算机视觉问题是通过数学模型或者统计学习识别图像中的物体、场景,继而实现视频时序序列上的运动识别、物体轨迹追踪、行为识别等等。然而,由于图像是三维空间在光学系统的投影,仅仅实现图像层次的识别是不够的,这在无人驾驶系统、增强现实技术等领域表现的尤为突出,计算机视觉的更高层次必然是准确的获得物体在三维空间中的形状、位置、姿态,通过三维重建技术实现物体在三维空间的检测、识别、追踪以及交互。近年来,借助于二维图像层面的目标检测和识别的性能提升,针对如何恢复三维空间中物体的形态和空间位置,研究者们提出了很多有效的方法和策略。

    02

    从单幅图像到双目立体视觉的3D目标检测算法

    经典的计算机视觉问题是通过数学模型或者统计学习识别图像中的物体、场景,继而实现视频时序序列上的运动识别、物体轨迹追踪、行为识别等等。然而,由于图像是三维空间在光学系统的投影,仅仅实现图像层次的识别是不够的,这在无人驾驶系统、增强现实技术等领域表现的尤为突出,计算机视觉的更高层次必然是准确的获得物体在三维空间中的形状、位置、姿态,通过三维重建技术实现物体在三维空间的检测、识别、追踪以及交互。近年来,借助于二维图像层面的目标检测和识别的性能提升,针对如何恢复三维空间中物体的形态和空间位置,研究者们提出了很多有效的方法和策略。

    04

    最新SOTA!隐式学习场景几何信息进行全局定位

    全局视觉定位是指利用单张图像,根据已有的地图,估计相机的绝对姿态(位置和方向)。这种技术可以应用于机器人和增强/虚拟现实等领域。这篇文章的主要贡献是提出了一种利用姿态标签来学习场景的三维几何信息,并利用几何信息来估计相机姿态的方法。具体来说,作者设计了一个学习模型,它可以从图像中预测两种三维几何表示(X, Y, Z坐标),一种是相机坐标系下的,另一种是全局坐标系下的。然后,通过将这两种表示进行刚性对齐,就可以得到与姿态标签匹配的姿态估计。这种方法还可以引入额外的学习约束,比如最小化两种三维表示之间的对齐误差,以及全局三维表示和图像像素之间的重投影误差,从而提高定位精度。在推理阶段,模型可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。作者在三个常用的视觉定位数据集上进行了实验,进行了消融分析,并证明了他们的方法在所有数据集上都超过了现有的回归方法的姿态精度,并且可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。

    02

    SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建

    机器之心专栏 机器之心编辑部 近年来,基于惯性的人体动作捕捉技术迅速发展。它们通过在人体上穿戴惯性传感器,实时测量人体的运动信息。然而,这就好比一个人在蒙着眼睛走路——我们可以感受到身体的运动,但随着时间的累积,我们越来越难以确定自己的位置。 本文则试图打开惯性动作捕捉的「眼睛」。通过额外佩戴一个手机相机,我们的算法便有了「视觉」。它可以在捕获人体运动的同时感知环境信息,进而实现对人体的精确定位。该项研究来自清华大学徐枫团队,已被计算机图形学领域国际顶级会议SIGGRAPH2023接收。 论文地址:htt

    05
    领券