首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【深度学习】 NumPy详解(二):数组操作(索引和切片、形状操作、转置操作、拼接操作)

本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组、索引和切片、数组数学、广播...Numpy的主要功能包括: 多维数组:Numpy的核心是ndarray对象,它是一个多维数组,可以存储同类型的元素。这使得Numpy非常适合处理向量、矩阵和其他多维数据结构。...广播(Broadcasting):Numpy支持不同形状的数组之间的运算,通过广播机制,可以对形状不同的数组进行逐元素的操作,而无需显式地编写循环。...spm=1001.2014.3001.5502 2、数组操作 1. 索引和切片 a. 索引 使用整数索引:可以使用整数索引访问数组中的特定元素。...使用负数索引和切片:可以使用负数索引和切片来从数组的末尾开始访问元素。例如,arr[-1]将返回数组arr中的最后一个元素。

11910

NumPy中的广播:对不同形状的数组进行操作

NumPy是用于Python的科学计算库。它是数据科学领域中许多其他库(例如Pandas)的基础。 在机器学习领域,无论原始数据采用哪种格式,都必须将其转换为数字数组以进行计算和分析。...因此,需要对阵列进行快速,鲁棒和准确的计算,以对数据执行有效的操作。 NumPy是科学计算的主要库,因为它提供了我们刚刚提到的功能。在本文中,我们重点介绍正在广播的NumPy的特定类型的操作。...广播描述了在算术运算期间如何处理具有不同形状的数组。我们将通过示例来理解和练习广播的细节。 我们首先需要提到数组的一些结构特性。...维度:索引的数量 形状:数组在每个维度上的大小 大小:数组中元素的总数。 尺寸的计算方法是将每个维度的尺寸相乘。我们来做一个简单的例子。...图中所示的拉伸只是概念上的。NumPy实际上并不对标量进行复制,以匹配数组的大小。相反,在加法中使用原始标量值。因此,广播操作在内存和计算方面非常高效。 我们还可以对高维数组和一个标量进行加法操作。

3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【NumPy学习指南】day4 多维数组的切片和索引

    或者,我们也可以将其看成是电子表格中工作表(sheet)、行和列的关系。...你可能已经猜到,reshape函数的作用是改变数组的“形状”,也就是改变数组的维度,其参数为一个正整数元组,分别指定数组在每个维度上的大小。如果指定的维度和数组的元素数目不相吻合,函数将抛出异常。...2列的房间,即不指定楼层和行号,用如下代码即可: >>>b[...,1] array([[1, 5, 9], [13, 17, 21]]) 类似地,我们可以选取所有位于第2行的房间,而不指定楼层和列号...,将在最前面的维度上翻转元素的顺序,在我们 的例子中将把第1层楼和第2层楼的房间交换: >>>b[::-1] array([[[12,13, 14, 15], [16, 17, 18,...], [[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]]) 刚才做了些什么 我们用各种方法对一个NumPy

    1.2K20

    在Python机器学习中如何索引、切片和重塑NumPy数组

    在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...像列表和NumPy数组的结构可以被切片。这意味着该结构的一个子序列也可以被索引和检索。 在机器学习中指定输入输出变量,或从测试行分割训练行时切片是最有用的。...数据形状 NumPy数组有一个shape属性,它返回一个元组,元组中的每个元素表示相应的数组每一维的长度。...(3, 2) 你可以在形状维度中使用数组维度的大小,例如指定参数。 元组的元素可以像数组一样访问,第0个索引为行数,第1个索引为列数。...reshape()函数接受一个参数,该参数指定数组的新形状。将一维数组重塑为具有一列的二维数组,在这种情况下,该元组将作为第一维(data.shape[0])中的数组形状和第二维的中1。

    19.1K90

    numpy数组中冒号和负号的含义

    numpy数组中":"和"-"的意义 在实际使用numpy时,我们常常会使用numpy数组的-1维度和":"用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。...总体来说,":"用以表示当前维度的所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示从后往前数的元素,-n即是表示从后往前数的第n个元素"#分片功能 a[1: ] 表示该列表中的第1...个元素到最后一个元素,而,a[ : n]表示从第0个元素到第n个元素(不包括n) import numpy as np POP_SIZE = 3 total_size = 10 idx = np.arange...[7 8 9] # good_idx_2 [0 1 2 3 4 5 6] # good_idx_3 [3 4 5 6 7 8 9] # good_idx_4 [0 1 2] 测试代码 import numpy...,所以程序运行两次 # s # s # s print('b1[-1:]\n', b1[-1:]) # 写在最后一个维度的":"没有实质性作用,此处表示的意思和b1[-1]相同 # b1[-1:] #

    2.2K20

    Python矩阵和Numpy数组的那些事儿

    今天给大家介绍矩阵和NumPy数组。 一、什么是矩阵? 使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。 二、Python矩阵 1....如果使用Windows,使用PyCharm 安装NumPy,NumPy它带有一些其他与数据科学和机器学习有关的软件包。 成功安装了NumPy,就可以导入和使用它。...注: NumPy的数组类称为ndarray。 3. 如何创建一个NumPy数组? 有几种创建NumPy数组的方法。...访问矩阵元素 与列表类似,可以使用索引访问矩阵元素。让从一维NumPy数组开始。...六、总结 本文基于Python基础,介绍了矩阵和NumPy数组,重点介绍了NumPy数组,如何去安装NumPy模块,如何去创建一个NumPy数组的两种方式。

    2.4K20

    Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)

    一个表示数组形状(shape)的元组,表示各维度大小的元组。...ndarray对象的内容可以通过索引或切片来访问和修改,与Python中list的切片操作一样。...【示例】一维数组切片和索引的使用 # 创建一维数组 a = np.arange(10) print(a) # 索引访问:1.正索引访问,从0开始到当前长度减一 print('正索引为0的元素:', a[...重新转化形状,把一维数组转化为4行3列的二维数组 # 数组元素 print(a) print('-'*15) # 使用索引获取 print(a[2]) # 获取第三行 print(a[1][2])...现在以两个 2*3 的数组 A 和 B 为例 numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下: numpy.concatenate((a1, a2,

    8.7K11

    数据科学 IPython 笔记本 9.9 花式索引

    译者:飞龙 协议:CC BY-NC-SA 4.0 在前面的章节中,我们看到了如何使用简单的索引(例如,arr [0]),切片(例如,arr [:5])和布尔掩码来访问和修改数组的片段( 例如,arr...在本节中,我们将介绍另一种数组索引方式,称为花式索引。 花式索引就像我们已经看到的简单索引,但是我们传递索引数组来代替单个标量。这使我们能够非常快速地访问和修改数组的复杂子集。...([71, 86, 60]) 使用花式索引时,结果的形状反映索引数组的形状,而不是被索引的数组的形状: ind = np.array([[3, 7], [4, 5]])...通过花式索引,返回值反映了索引的广播形状,而不是被索引的数组的形状。...,用于访问和修改数组值。

    63120

    Two Sum(HashMap储存数组的值和索引)

    (给定一个整数数组和一个目标值,找出数组中和为目标值的两个数的索引。 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。)...【分析】 target是两个数字的和,而题目要求返回的是两个数的索引,所以我们可以用HashMap来分别储存数值和索引。 我们用key保存数值,用value保存索引。...然后我们通过遍历数组array来确定在索引值为i处,map中是否存在一个值x,等于target - array[i]。...如果存在,那么map.get(target - array[i])就是其中一个数值的索引,而i即为另一个。...以题目中给的example为例: 在索引i = 0处,数组所储存的值为2,target等于9,target - array[0] = 7,那么value =7所对应的key即为另一个索引,即i = 2

    95710

    module ‘numpy‘ has no attribute ‘int‘

    通常情况下,这个错误是由于意外地尝试访问'int'属性而导致的。可能的解决方法检查属性名称:仔细检查你尝试访问的属性名称。确保它是有效的,并且在numpy模块中存在。...Numpy数组的维度被称为轴(axis),轴的个数被称为秩(rank)。Numpy数组提供了一系列函数和操作符用于快速、高效地对数组进行操作,例如切片、索引、广播等。...多维数组操作:Numpy提供了丰富的多维数组操作,支持包括索引、切片、变形、迭代、花式索引等在内的功能,使得数组的操作更加灵活和方便。...广播功能:Numpy的广播功能使得在不同形状的数组之间进行数值运算成为可能,它能够自动处理形状不匹配的数组,避免了显式的循环操作。...的一些基本用法,包括创建数组、访问数组元素、进行数组运算、调整数组形状以及使用数学函数等。

    1K70

    NumPy 1.26 中文文档(五十八)

    (gh-16554) operator.concat 函数现在对数组参数引发 TypeError 异常 先前的行为是退回到加法并加上这两个数组,这被认为是连接函数的意外行为。...(gh-16815) 具有不匹配形状的布尔数组索引现在会正确地给出IndexError 以前,如果布尔数组索引与被索引数组的大小匹配但形状不匹配,则在某些情况下会被错误地允许。...(gh-16815) 具有不匹配形状的布尔数组索引现在会正确返回IndexError 以前,如果布尔数组索引与索引数组的大小匹配但形状不匹配,则在某些情况下会出现错误。...(gh-16554) operator.concat函数现在对数组参数会引发 TypeError 之前的行为是退回到加法并添加两个数组,这被认为是一个连接函数的意外行为。...(gh-16815) 具有不匹配形状的布尔数组索引现在会适当返回 IndexError 以前,如果布尔数组索引与索引数组的大小匹配但不能匹配形状,则在某些情况下会被错误地允许。

    30110

    机器学习入门 3-5 Numpy数组(和矩阵)的基本操作

    首先导入 numpy 包 import numpy as np 通过 arange 函数创建一个一维数组 x x = np.arange print(x) ''' array([0, 1, 2,...print(x.ndim) # 1 print(X.ndim) # 2 shape 属性查看数组的维度,返回值是一个元组,元组中对应位置的值为数组中对应维度的元素个数。...X[:2][:3] 等价于 new_X = X[:2] 和 new_X[:3] 这也是为什么推荐使用 X[0, 0] 而不是 X[0][0] 的原因。...子数组与原数组 在 Python 中对列表进行切片实际上创建了新的列表,而 Numpy 优先考虑效率,所以在 numpy 中,如果修改了子数组,那么相应的原数组也会发生改变,反之亦然。...2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) ''' Reshape 通过 reshape 函数修改数组的形状

    49010

    JAX 中文文档(十六)

    参数: mat (BCOO) – 待重新形状的 BCOO 数组。 起始索引 (Sequence[int]) – 长度为 mat.ndim 的整数序列,指定每个切片的起始索引。...如果指定的 nse 大于必要的数量,将使用标准填充值填充数据和索引数组。如果小于必要的数量,将从输出矩阵中删除数据元素。 返回: BCOO 数组具有排序索引且无重复索引。...以前的行为是对非标量 initial 值进行广播,这是一个意外的实现细节(#14446)。...() 现在接受一个可选的 mode 参数,用于指定超出边界索引的行为。...这种变化可能会破坏使用 JAX 数组执行必须静态知道形状或索引计算的代码;解决方法是改用经典的 NumPy 数组执行这些计算。 jnp.ndarray 现在是 JAX 数组的真正基类。

    40810

    NumPy 1.26 中文官方指南(一)

    此外,在上面的示例中,a 和 b 可能是相同形状的多维数组,或者是标量和数组,甚至是两个形状不同的数组,只要较小的数组可以“扩展”到大数组的形状,使得结果的广播是明确的。...此外,在上面的示例中,a 和 b 可以是相同形状的多维数组,或者是标量和数组,甚至是两个形状不同的数组,只要较小的数组可以“扩展”到较大数组的形状,使得结果的广播不会产生歧义即可。...高级索引和索引技巧 NumPy 提供比普通 Python 序列更多的索引工具。除了之前我们所见到的按整数和切片进行索引之外,数组还可以通过整数数组和布尔数组进行索引。...每个维度的索引数组必须具有相同的形状。...高级索引和索引技巧 NumPy 提供的索引功能比常规 Python 序列更多。除了之前看到的通过整数和切片进行索引外,数组还可以通过整数数组和布尔数组进行索引。

    1.1K10

    手撕numpy(一):简单说明和创建数组的不同方式​​​​​

    numpy提供了一个高性能的多维数组对象ndarray(N Dimension Array),以及大量的库函数和操作,可以帮助程序员轻松地进行数值计算。...最终python通过集成C和C++,最终解决这个问题,也就是说:底层运行的是C和C++的代码,但是上层使用的是python语言去写的。这就是我们为什么都喜欢使用"numpy库"的原因。...2、学习numpy的套路 学习怎么使用numpy组织数据(怎么创建出,你想要的不同维度,不同形状的数组):numpy提供了一个高性能的多维数组对象:ndarray。...ndarray数组中存储的所有的元素的类型,都必须一致。 ② 使用numpy创建数组和使用原生list的效率对比 ?...4)按照已有的ndarray数组的形状,创建形状相同但指定元素的ndarray数组; ① 常用函数如下 np.zeros_like() np.ones_like() np.full_like() ② 操作如下

    67920

    python:numpy详细教程

    ,结果数组和更普遍和精确的已知(这种行为叫做upcast)。   ...   当使用数组作为参数时,r_和c_的默认行为和vstack和hstack很像,但是允许可选的参数给出组合所沿着的轴的代号。     ...花哨的索引和索引技巧     NumPy比普通Python序列提供更多的索引功能。除了索引整数和切片,正如我们之前看到的,数组可以被整数数组和布尔数组索引。     ...通过布尔数组索引的方法是不同的我们显式地选择数组中我们想要和不想要的元素。     我们能想到的使用布尔数组的索引最自然方式就是使用和原数组一样形状的布尔数组。   ...索引:比较矩阵和二维数组     注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上的。

    1.2K40
    领券