首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

请不要把数据分析和机器学习混为一谈

经常看到有很多人把机器学习和数据分析混为一谈,因此我想分析一下机器学习和数据分析这两个职位之间有什么不同,他们干的事情有什么不同,并且借此来分析下两者的技术背景有什么不同。 首先呢这两者的第一个区别就是他们处理的数据特点不一样。那么怎么可以简单地理解呢? 1、数据处理特点不同 首先从我们的传统上。数据分析他们所处理的是交易数据,而我们机器学习处理的则是行为数据。那么,什么是交易数据,什么是行为数据呢? 比如说对于一个电商来说,他的用户交易数据就是下单,比如说对于银行这样的系统来说,他的交易数据就是用户的存取

04

请不要把数据分析和机器学习混为一谈

经常看到有很多人把机器学习和数据分析混为一谈,因此我想分析一下机器学习和数据分析这两个职位之间有什么不同,他们干的事情有什么不同,并且借此来分析下两者的技术背景有什么不同。 首先呢这两者的第一个区别就是他们处理的数据特点不一样。那么怎么可以简单地理解呢? 首先从我们的传统上。数据分析他们所处理的是交易数据,而我们机器学习处理的则是行为数据。那么,什么是交易数据,什么是行为数据呢?比如说对于一个电商来说,他的用户交易数据就是下单,比如说对于银行这样的系统来说,他的交易数据就是用户的存取款账单,再比如对于电信

09
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    mysql必知必会

    数据库是按照数据结构来组织、存储和管理数据的仓库,它产生于距今。 六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变为用户所需要的各种数据管理的方式。 数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各方面得到了广泛的应用。 在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学决策和决策管理的重要技术手段。

    02
    领券