首页
学习
活动
专区
圈层
工具
发布

Seaborn-让绘图变得有趣

散点图 当想要显示两个要素或一个要素与标签之间的关系时,散点图很有用。这非常有用,因为还可以描述每个数据点的大小,为它们涂上不同的颜色并使用不同的标记。看看seaborn的基本命令是做什么的。...但是,由于这不是分类数据,并且只有一个分类列,因此决定使用它。 seaborn中的地块也可以text使用来添加到每个条annotate。在仔细查看数据集时,发现缺少许多元数据信息。...然后了解了它们,发现它们是小提琴图,与箱形图非常相似,并根据密度描绘了宽度以反映数据分布。在Seaborn中,创建小提琴图只是一个命令。...带群图的箱形图 箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。...(和群图) 从上面的污点中,可以看到如何对中的五个类别分别描述箱形图ocean_proximity。

4.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【干货】 知否?知否?一文彻底掌握Seaborn

    iris_data.head(10) 数据看起来是可用的 (大神 Hadley Wickhan 对干净数据的定义是,每一列代表一个特征;每一行代表一个样例)。...数据的第一行定义了列标题,标题的描述足以让我们了解每个列代表的内容 (萼片长度,萼片宽度,花瓣长度和花瓣宽度),标题甚至给我们记录测量的单位 (cm, 厘米) 第一行之后的每一行代表一个花的观测数据:四个测量指标和一个类...在测量中有一些明显的异常值可能是错误的。 第二行的图 1-2-4 (或第二列的图1-2-4),对于 Iris-setosa,一个萼片宽度 (sepal_width) 值落在其正常范围之外。...2 广度了解 Seaborn 在本节中我们用 Seaborn 提供了内置数据集 Titantic 来展示 条形图 (barplot) 计数图 (countplot) 点图 (pointplot) 箱形图...2.6 箱形水平图 画出萼片长度,萼片宽度,花瓣长度和花瓣宽度的箱形图 (横向)。上节也可以用这个图来找异常值。

    2.9K10

    推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    进行可视化时,你可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图 ? 箱形图 ? 小提琴图 ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: ? 散点图矩阵(SPLOM)允许你可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。数据集中的每一行都显示为每个图中的一个点。...甚至是 动画帧到数据框(dataframe)中的列。

    6K10

    10个实用的数据可视化的图表总结

    Pandas 允许我们绘制六边形 binning [2]。我已经展示了用于查找 sepal_width 和 sepal_length 列的密度的图。...如果我们针对 x 和 y 轴绘制这两个值,我们将得到一个散点图。 散点图位于对角线上。这意味着样本分布是正态分布。如果散点图位于左边或右边而不是对角线,这意味着样本不是正态分布的。...所以它是正态分布的。 5、小提琴图(Violin Plot) 小提琴图与箱线图相关。我们能从小提琴图中获得的另一个信息是密度分布。简单来说就是一个结合了密度分布的箱线图。我们将其与箱线图进行比较。...6、箱线图的改进版(Boxen plot) Boxenplot 是 seaborn 库引入的一种新型箱线图。对于箱线图,框是在四分位数上创建的。但在 Boxenplot 中,数据被分成更多的分位数。...sns.boxenplot(x=df["sepal_width"]) 上图显示了比箱线图更多的盒。这是因为每个框代表一个特定的分位数。

    3K50

    在Python中进行探索式数据分析(EDA)

    根据以上结果,我们可以看到python中的索引从0开始。 底部5行 ? 要检查数据框的维数,让我们检查数据集中存在的行数和列数。...由于列的名称很长,让我们重命名它们。 重命名列 ? 删除列 ? 删除数据框不需要的列。数据中的所有列不一定都相关。在这个数据中,受欢迎程度、门的数量、车辆大小等列不太相关。...我们将使用matplotlib和seaborn一起可视化一些变量 直方图(分布图) 直方图用于显示数值变量的形状和分布。对于类别变量,它显示变量中存在的类别计数。 ? ?...分类变量的直方图 ? 这是“ 制造变量” 的计数图。每个条形图都显示数据集中存在的类别计数。 离群值检查 离群值是与其他值或观察值明显不同的值。离群值会在建模中产生重大问题。...在Cylinders变量中,只有4个观测值是异常值。 根据箱形图,超出Q1(25个百分位数)和Q3(75个百分位数)或IQR(四分位数间距)范围之外的任何观测值均被视为异常值。

    3.5K30

    这才是你寻寻觅觅想要的 Python 可视化神器!

    进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: ? 箱形图: ? 小提琴图: ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: ? 散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。...甚至是 动画帧到数据框(dataframe)中的列。

    5K21

    强烈推荐一款Python可视化神器!

    进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: ? 箱形图: ? 小提琴图: ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: ? 散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。...甚至是 动画帧到数据框(dataframe)中的列。

    5.3K30

    这才是你寻寻觅觅想要的 Python 可视化神器

    进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: image.png 箱形图: image.png 小提琴图: image.png...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起! image.png 平行坐标允许您同时显示3个以上的连续变量。...dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。 image.png 并行类别是并行坐标的分类模拟:使用它们可视化数据集中多组类别之间的关系。

    4.6K20

    盘一盘 Python 系列 6 - Seaborn

    箱形图 2.5 小提琴图 2.6 箱形水平图 2.7 双变量分布图 总结 1 深度了解 Seaborn 1.1 鸢尾花识别 假设我们要创建一个智能手机应用程序,从智能手机拍摄的照片中自动识别花的种类...iris_data.head(10) 数据看起来是可用的 (大神 Hadley Wickhan 对干净数据的定义是,每一列代表一个特征;每一行代表一个样例)。...数据的第一行定义了列标题,标题的描述足以让我们了解每个列代表的内容 (萼片长度,萼片宽度,花瓣长度和花瓣宽度),标题甚至给我们记录测量的单位 (cm, 厘米) 第一行之后的每一行代表一个花的观测数据:四个测量指标和一个类...在测量中有一些明显的异常值可能是错误的。 第二行的图 1-2-4 (或第二列的图1-2-4),对于 Iris-setosa,一个萼片宽度 (sepal_width) 值落在其正常范围之外。...2.6 箱形水平图 画出萼片长度,萼片宽度,花瓣长度和花瓣宽度的箱形图 (横向)。上节也可以用这个图来找异常值。

    1.8K30

    50 个数据可视化图表

    针对每列绘制线性回归线或者,可以在其每列中显示每个组的最佳拟合线。可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: 4....箱形图(Box Plot) 箱形图是一种可视化分布的好方法,记住中位数、第 25 个第 45 个四分位数和异常值。但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。...因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是 5 和 47。因此,写入该组中的观察数量是必要的。 27....包点+箱形图(Dot+Box Plot) 包点+箱形图(Dot+Box Plot)传达类似于分组的箱形图信息。此外,这些点可以了解每组中有多少数据点。 28....小提琴图(Violin Plot) 小提琴图是箱形图在视觉上令人愉悦的替代品。小提琴的形状或面积取决于它所持有的观察次数。但是,小提琴图可能更难以阅读,并且在专业设置中不常用。 29.

    4.9K20

    我用Python的Seaborn库,绘制了15个超好看图表!

    箱线图 箱线图由一个箱形图和两个须状图组成。 它表示四分位数范围(IQR),即第一和第三四分位数之间的范围。中位数由框内的直线表示。 晶须从盒子边缘延伸到最小值和最大值的1.5倍IQR。...计数图 计数图是一种分类图,它显示了分类变量的每个类别中观测值的计数。 它本质上是一个柱状图,其中每个柱的高度代表特定类别的观测值的数量。 计算数据集中每个物种的样本总数。...对角线图是单变量分布图,它绘制了每列数据的边际分布。...FacetGrid Seaborn中的FacetGrid函数将数据集的一个或多个分类变量作为输入,然后创建一个图表网格,每种类别变量的组合都有一个图表。...网格中的每个图都可以定制为不同类型的图,例如散点图、直方图或箱形图,具体取决于要可视化的数据。 在这里,制作了每个物种花瓣长度的图表。

    1.6K30

    总结了50个最有价值的数据可视化图表

    针对每列绘制线性回归线或者,可以在其每列中显示每个组的最佳拟合线。可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: 4....箱形图(Box Plot) 箱形图是一种可视化分布的好方法,记住中位数、第 25 个第 45 个四分位数和异常值。但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。...因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是 5 和 47。因此,写入该组中的观察数量是必要的。 27....包点+箱形图(Dot+Box Plot) 包点+箱形图(Dot+Box Plot)传达类似于分组的箱形图信息。此外,这些点可以了解每组中有多少数据点。 28....小提琴图(Violin Plot) 小提琴图是箱形图在视觉上令人愉悦的替代品。小提琴的形状或面积取决于它所持有的观察次数。但是,小提琴图可能更难以阅读,并且在专业设置中不常用。 29.

    4.2K10

    50个最有价值的数据可视化图表(推荐收藏)

    针对每列绘制线性回归线或者,可以在其每列中显示每个组的最佳拟合线。可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: ? 4....箱形图(Box Plot) 箱形图是一种可视化分布的好方法,记住中位数、第 25 个第 45 个四分位数和异常值。但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。...因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是 5 和 47。因此,写入该组中的观察数量是必要的。 ? 27....包点+箱形图(Dot+Box Plot) 包点+箱形图(Dot+Box Plot)传达类似于分组的箱形图信息。此外,这些点可以了解每组中有多少数据点。 ? 28....小提琴图(Violin Plot) 小提琴图是箱形图在视觉上令人愉悦的替代品。小提琴的形状或面积取决于它所持有的观察次数。但是,小提琴图可能更难以阅读,并且在专业设置中不常用。 ? 29.

    5.5K20

    用可视化探索数据特征的N种姿势

    直方图探索分布 直方图是数值数据分布的精确图形表示。直方图通过将可能的值分散到箱中,并显示落入每个箱中到对象数,显示属性值到分布。 对于分类属性,每个值在一个箱中,如果值过多,则使用某种方法将值合并。...对于连续属性,将值域划分成箱(通常是等宽)并对每个箱中对值计数。 一旦有了每个箱对计数,就可以构造条形图,每个箱用一个条形表示,并且每个条形对面积正比于落在对应区间对值对个数。...盒须图探索离散分布 箱形图Box plot又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因型状如箱子而得名。...方法一 使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,默认按照列columns的名称在适当的位置展示图例,比matplotlib绘制节省时间,且DataFrame格式的数据更规范...方法二 DataFrame.hist函数在DataFrame中的每个系列上调用matplotlib.pyplot.hist(),每列产生一个直方图。

    2.4K20

    Python Seaborn综合指南,成为数据可视化专家

    Hue图 我们可以在色调(Hue)的帮助下在我们的图片中添加另一个维度,通过为点赋予颜色来实现,每种颜色都有一些附加的意义。 在上图中,色调代表是样本类别,这就是为什么它有一个不同的颜色。...使用Seaborn的箱线图 我们可以绘制的另一种绘图是箱线图 ,它显示了分布的三个四分位值以及最终值。箱图中的每个值都对应于数据中的实际观察值。...使用Seaborn绘制Pointplot 另一种类型的图是pointplot,这个图指出估计值和置信区间。Pointplot连接来自相同色调类别的数据。这有助于识别特定色调类别中的关系如何变化。...通过绘制大量的分位数,可以对分布的形状有更多的了解。这些类似于箱形图,让我们看看如何使用它们。...可视化数据集中的成对关系 我们还可以使用seaborn库的pairplot()函数来绘制数据集中的多个二元分布。这显示了数据库中每一列之间的关系。并绘制各变量在对角线上的单变量分布图。

    3.3K20

    Matplotlib可视化没那么难:7种常用图表最全绘制攻略来了!

    Matplotlib是一个跨平台库,是根据数组中的数据制作2D图的可视化分析工具。...Matplotlib提供了丰富的数据绘图工具,主要用于绘制一些统计图形,例如散点图、条形图、折线图、饼图、直方图、箱形图等。...▲图5 直方图 06 箱形图 箱形图又称为盒须图、盒式图或箱线图,是一种用于显示一组数据分散情况的统计图,因形状如箱子而得名。它主要用于反映原始数据分布的特征,也可以进行多组数据分布特征的比较。...▲图7 水平箱形图 07 组合图 前面介绍的都是在figure对象中创建单独的图像,有时候我们需要在同一个画布中创建多个子图或者组合图,此时可以用add_subplot创建一个或多个subplot来创建组合图...代码清单7 绘制组合图 from numpy.random import randn import matplotlib.pyplot as plt #在同一个figure中创建一组2行2列的subplot

    8K31

    数据挖掘机器学习---汽车交易价格预测详细版本{EDA-数据探索性分析}

    同时会对名称、车辆类型、变速箱、model、燃油类型、品牌、公里数、价格等信息进行脱敏。 一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。...数字特征分析 相关性分析 查看几个特征得 偏度和峰值 每个数字特征得分布可视化 数字特征相互之间的关系可视化 多变量互相回归关系可视化 类型特征分析 unique分布 类别特征箱形图可视化...类别特征的小提琴图可视化 类别特征的柱形图可视化类别 特征的每个类别频数可视化(count_plot) 在jupyter notenook下运行!!!!...2.2总览数据概况 describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断...## 2) 类别特征箱形图可视化 # 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下 categorical_features = ['model', 'brand

    82730

    50种常见Matplotlib科研论文绘图合集!赶紧收藏~~

    针对每列绘制线性回归线 或者,可以在其每列中显示每个组的最佳拟合线。...通过对中位数进行不同着色,组的真实定位立即变得明显。 26、箱形图 (Box Plot) 箱形图是一种可视化分布的好方法,记住中位数、第25个第45个四分位数和异常值。...但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是5和47。...因此,写入该组中的观察数量是必要的。 27、包点+箱形图 (Dot + Box Plot) 包点+箱形图 (Dot + Box Plot)传达类似于分组的箱形图信息。...28、小提琴图 (Violin Plot) 小提琴图是箱形图在视觉上令人愉悦的替代品。小提琴的形状或面积取决于它所持有的观察次数。但是,小提琴图可能更难以阅读,并且在专业设置中不常用。

    5.4K20

    Python中最常用的 14 种数据可视化类型的概念与代码

    堆叠柱状图将每个柱子进行分割以显示相同类型下各个数据的大小情况。 分类: 堆积柱状图: 比较同类别各变量和不同类别变量总和差异。 百分比堆积柱状图: 适合展示同类别的每个变量的比例。...象形图 它使用图标来提供一小组离散数据的更具吸引力的整体视图。图标代表基础数据的主题或类别。例如,人口数据将使用人的图标。每个图标可以代表一个或多个(例如一百万)个单位。...数据的并排比较在图标的列或行中完成。这是为了将每个类别相互比较。 plotly code 在 plotly 中,标记符号可以与 graph_objs Scatter 一起使用。...箱形图又称盒须图、盒式图或箱线图,是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来显示一组数据分布情况的统计图。...小提琴图 一般来说,小提琴图是一种绘制连续型数据的方法,可以认为是箱形图与核密度图的结合体。当然了,在小提琴图中,我们可以获取与箱形图中相同的信息。

    11.2K21
    领券