IDA(迭代加深A)和使用启发式函数的IDS(迭代加深搜索)在某些方面是相似的,但也存在一些关键的区别。
迭代加深搜索(IDS):
IDA(迭代加深A)**:
IDS的优势:
IDA的优势*:
问题:IDA*和IDS是否相同?
原因:虽然IDA*和IDS都使用了迭代加深的方式来避免内存问题,并且都使用了启发式函数来指导搜索,但它们在算法实现和目标上有所不同。
解决方法:
以下是一个简单的IDA*示例代码,用于解决八数码问题:
import heapq
def heuristic(state):
# 计算启发式值(例如曼哈顿距离)
distance = 0
for i in range(3):
for j in range(3):
if state[i][j] != 0:
goal_i, goal_j = divmod(state[i][j] - 1, 3)
distance += abs(i - goal_i) + abs(j - goal_j)
return distance
def ida_star(initial_state):
threshold = heuristic(initial_state)
while True:
visited = set()
t, f = dfs(initial_state, 0, threshold, visited)
if t == -1:
return False
if t == 0:
return True
threshold = f
def dfs(state, cost, threshold, visited):
f = cost + heuristic(state)
if f > threshold:
return f, f
if is_goal(state):
return 0, 0
visited.add(tuple(map(tuple, state)))
min_cost = float('inf')
for next_state in get_next_states(state):
if tuple(map(tuple, next_state)) not in visited:
t, f = dfs(next_state, cost + 1, threshold, visited)
if t == 0:
return 0, 0
if t != -1:
min_cost = min(min_cost, t)
visited.remove(tuple(map(tuple, state)))
return -1, min_cost
def is_goal(state):
# 检查是否达到目标状态
return state == [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
def get_next_states(state):
# 生成所有可能的下一步状态
next_states = []
i, j = find_zero(state)
moves = [(0, 1), (1, 0), (0, -1), (-1, 0)]
for move in moves:
new_i, new_j = i + move[0], j + move[1]
if 0 <= new_i < 3 and 0 <= new_j < 3:
new_state = [row[:] for row in state]
new_state[i][j], new_state[new_i][new_j] = new_state[new_i][new_j], new_state[i][j]
next_states.append(new_state)
return next_states
def find_zero(state):
# 找到空白格的位置
for i in range(3):
for j in range(3):
if state[i][j] == 0:
return i, j
# 示例初始状态
initial_state = [[1, 2, 3], [4, 0, 5], [6, 7, 8]]
print(ida_star(initial_state))
希望这些信息对你有所帮助!
云+社区沙龙online第5期[架构演进]
云+社区技术沙龙[第14期]
T-Day
serverless days
云+社区技术沙龙[第1期]
云+社区技术沙龙 [第31期]
小程序·云开发官方直播课(数据库方向)
Techo Day 第二期
Hello Serverless 来了
云+社区技术沙龙[第6期]
领取专属 10元无门槛券
手把手带您无忧上云