首页
学习
活动
专区
圈层
工具
发布

C++ OpenCV霍夫变换--圆检测

相关的API介绍 cv::HoughCircles ? ?...代码演示 新建一个项目opencv-0018,配置属性(VS2017配置OpenCV通用属性),然后在源文件写入#include和main方法 ? ?...可以看到用蓝色标的右边检测出两个圆来,但是最大的白色并没有检测出来 我们重新看一下霍夫的圆检测的函数 cv::HoughCircles(src, circles, CV_HOUGH_GRADIENT,1...可以看到这回检测出来白色的球了,但是上面的黑色圆因为是个侧面,所以出现了检测出两个圆来 说明还是参数的问题,我们再修改一下 cv::HoughCircles(src, circles, CV_HOUGH_GRADIENT...可以看到,我们现在检测的都是正常了 所以说我们在使用圆检测的时候需要多次测试才能得到想要的结果。 ---- -END-

3K30

C++ OpenCV自适应阈值Canny边缘检测

本文长度为1669字,预计阅读5分钟 前言 Canny边缘检测速度很快,OpenCV中经常会用到Canny边缘检测,以前的Demo中使用Canny边缘检测都是自己手动修改高低阈值参数,最近正好要研究点小东西时...从上图中可以看出,命令行窗口中min和max就是求出的高低阈值,使用Canny边缘检测时直接就按这两个高低阈值处理的。...要实现自动阈值,方法就是求出图像的灰度直方图,直方图中找出中位数,然后根据中位数值设定一个标准差值,用中位数的值加上标准差来求出高低阈值。...# 实现思路 1 图像转为灰度图 2 求出灰度直方图,并找到中位数 3 根据中位数和设定的sigma值求出高低阈值 4 使用Canny边缘检测 代码实现 ?...+ sigma) * midval); } 调用高低阈值Canny检测的代码 //转换灰度图 Mat gray, dst; cvtColor(src, gray, COLOR_BGR2GRAY

3.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV 圆检测

    OpenCV 的 HoughCircles() 函数可以用来在一张单通道图像里检测圆形物体。...method 定义检测图像中圆的方法。目前唯一实现是cv2.HOUGH_GRADIENT dp:累加器分辨率与图像分辨率的反比。dp取值越大,累加器数组越小。...minDist:检测到的各个圆的中心坐标之间的最小距离(以像素为单位)。如果过小,可能检测到多个相邻的圆。反之,过大则可能导致很多圆检测不到。 param1:用于处理边缘检测的梯度值方法。...param2:cv2.HOUGH_GRADIENT方法的累加器阈值。阈值越小,能检测到的圆越多。 minRadius:半径的最小值(以像素为单位)。...最后进行圆检测: #HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius

    2.6K20

    Python+opencv 机器视觉 - 基于霍夫圈变换算法检测图像中的圆形实例演示

    Python+opencv 机器视觉 - 基于霍夫圈变换算法检测图像中的圆形实例演示 第一章:霍夫变换检测圆 ① 实例演示1 ② 实例演示2 ③ 霍夫变换函数解析 第二章:Python + opencv...minDist 为两个圆中心的最小距离; param1 对于 CV_HOUGH_GRADIENT 表示传入 canny 边缘检测的阈值; param2 对于 CV_HOUGH_GRADIENT 表示检测阶段圆心的累加阈值...,值越小能检测出的圆越多,值越大的话就检测出来的少,但是检测出来的圆形相比于没检测出来的会更圆、更完美一些; minRadius 为最小半径; minRadius 为最大半径; 首先通过均值偏移滤波降噪来排除干扰的点...,minDist两个圆中心的最小距离 circles = cv.HoughCircles(gray_img, cv.HOUGH_GRADIENT, 1, 30, param1=50, param2=30...,minDist两个圆中心的最小距离 circles = cv.HoughCircles(gray_img, cv.HOUGH_GRADIENT, 1, 30, param1=50, param2

    2.1K20

    17: 霍夫变换

    目标 理解霍夫变换的实现 分别使用霍夫线变换和圆变换检测图像中的直线和圆 OpenCV函数:cv2.HoughLines(), cv2.HoughLinesP(), cv2.HoughCircles()...(一般是阈值分割或边缘检测后的图) 参数2:距离r的精度,值越大,考虑越多的线 参数3:角度θ的精度,值越小,考虑越多的线 参数4:累加数阈值,值越小,考虑越多的线 # 3.将检测的线画出来(注意是极坐标噢...,有两个可选参数: minLineLength:最短长度阈值,比这个长度短的线会被排除 maxLineGap:同一直线两点之间的最大距离 # 3.将检测的线画出来 for line in lines:...参数4:两个不同圆圆心的最短距离 参数5:param2跟霍夫直线变换中的累加数阈值一样 # 将检测的圆画出来 for i in circles[0, :]: cv2.circle(drawing...霍夫圆变换:cv2.HoughCircles()。

    1.2K40

    计算机视觉 OpenCV Android | 基本特征检测之 霍夫圆检测

    这里的霍夫空间便是一个三维空间, 所以如果还是跟之前的累积计算一样,计算量就会大大增加, 这样显然不利于快速计算与检测, 所以在OpenCV中, 霍夫圆检测不是基于二值图像或者边缘检测的结果,..., 对图像中的噪声特别敏感, 所以在OpenCV中使用相关API实现霍夫圆检测的时候, 首先需要通过模糊操作对图像进行噪声抑制处理。...霍夫圆检测的API: HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1...param1:边缘检测Canny算法中使用的高阈值。 param2:累加器阈值,值越大,说明越有可能是圆。 minRadius:检测的最小圆半径,单位为像素。...指定边缘阈值 霍夫圆检测的基于内部边缘检测的结果; 而边缘阈值影响边缘检测最终留下的边缘像素,即影响内部边缘检测的结果, 因而影响霍夫圆检测的计算量; 累积器阈值 此阈值的高低便是提取圆的要求的高低

    1.8K21

    基于Python利用OpenCV实现Hough变换的形状检测

    使用 OpenCV 检测直线 在OpenCV中,使用霍夫变换的线检测是在函数HoughLines和HoughLinesP(概率霍夫变换)中实现的。我们将重点讨论后者。...使用 OpenCV 检测圆 该过程与直线的过程大致相同,不同之处在于这次我们将使用 OpenCV 库中的不同函数。...在 CV_HOUGH_GRADIENT 的情况下,它是传递给 Canny () 边缘检测器的两个阈值中较高的阈值(较低的阈值是较小的两倍)。 param2:第二个方法特定的参数。...在 CV_HOUGH_GRADIENT 的情况下,它是检测阶段圆心的累加器阈值。它越小,检测到的假圆就越多,与较大累加器值相对应的圆圈将首先返回。 minRadius:最小圆半径。...,这是因为该函数 HoughCircles 具有内置的 Canny 检测函数。

    3.2K10

    OpenCV 图像分析之 —— 霍夫变换(Hough Transform)

    霍夫变换(Hough Transform)是一个关于图像领域类的一个算法,被用来检测图像中的各类曲线,直线,圆,椭圆等等,本文记录相关内容与 OpenCV 实现。...OpenCV中圆变换的实现通过采用一种称为Hough梯度法的较为复杂的方法来避免了这个问题。 在用霍夫变换检测圆的实现中使用两轮筛选。...一旦检测到可能的圆心(即收到预定数量的投票),就在第二轮筛选中建立半径值范围的一维直方图。这个直方图的尖峰就是被检测圆的半径 OpenCV 霍夫圆变换 Hough梯度法工作过程如下。...如果有足够数量的点组合成一个圆并且其圆心与之前选中圆心的距离足够大,就保留这个圆心。 官方贴士: 通常该函数能很好地检测出圆的中心。但是,它可能无法找到正确的半径。...cv2.HoughCircles OpenCV 实现霍夫圆变换的函数 官方文档 函数使用 cv2.HoughCircles( image, # 单通道灰度图像,uint8 格式 method

    7.6K10

    OpenCV:霍夫直线变换和霍夫圆变换

    ,θ以弧度为单位 第一个参数,输入图像应该是二进制图像,因此在应用霍夫变换之前,请应用阈值或使用Canny边缘检测 第二和第三参数分别是ρ和θ精度 第四个参数是阈值,这意味着应该将其视为行的最低投票。...取而代之的是,它仅采用随机的点子集,足以进行直线检测。只是必须降低阈值。...OpenCv中实现的函数是cv2.HoughCircles()。它有很多参数。....HOUGH_GRADIENT,它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半 param2:默认值100,它是method设置的检测方法的对应的参数,对当前唯一的方法霍夫梯度法cv2....HOUGH_GRADIENT,它表示在检测阶段圆心的累加器阈值,它越小,就越可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了 minRadius:默认值0,圆半径的最小值

    1.5K30

    OpenCV与图像处理(四)

    本章节的主要内容是霍夫变换,包括以下2个知识点: 1、直线检测 2、圆检测 以下代码均在python3.6,opencv4.2.0环境下试了跑一遍,可直接运行。...图像霍夫变换通过把图像的坐标从2D平面坐标系变换到极坐标空间,可以发现原来在平面坐标难以提取的几何特征信息(如:直线、圆等),图像的直线与圆检测就是典型的利用霍夫空间特性实现二值图像几何分析的例子。...,进行线检测,须降低阈值。...---- 3、霍夫圆检测:cv2.HoughCircles() 假设平面坐标的任意一个圆上的点C,转换到极坐标中,在点C处有最大值,霍夫变换正是利用这个原理实现圆的检测。...基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步: (1)检测边缘,发现可能的圆心。 (2)基于第一步的基础上从候选圆心开始计算最佳半径大小。

    90920

    基于OpenCV的区域分割、轮廓检测和阈值处理

    OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。 现在,假设我们只需要从整个输入帧中检测到一个对象。...因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤: • 定义兴趣区 • 在ROI中检测轮廓 • 阈值检测轮廓轮廓线 什么是ROI?...对我而言,在将ROI框架设为阈值后,找到轮廓效果最佳。因此,要找到轮廓,手上的问题是- 什么是阈值? 阈值不过是图像分割的一种简单形式。这是将灰度或rgb图像转换为二进制图像的过程。例如 ?...(这是二进制阈值帧) 因此,在对rgb帧进行阈值处理后,程序很容易找到轮廓,因为由于ROI中感兴趣对象的颜色将是黑色(在简单的二进制脱粒中)或白色(在如上所述的反向二进制脱粒中),因此分割(将背景与前景即我们的对象分开...在对框架进行阈值处理并检测到轮廓之后,我们应用凸包技术对围绕对象点的紧密拟合凸边界进行设置。实施此步骤后,框架应如下所示- ?

    2.9K22

    【目标跟踪】奇葩需求如何处理(二)

    传统的方法,那无疑是分割了,分割然后判断圆形,最后统计分布,寻找能区分的特征量,能够有简单区分的值是最好的。 然后花了 20min 得出一个检测圆的代码。...cv2.imshow("show", edges) cv2.waitKey(100) # 应用霍夫圆变换检测圆形物体 circles = cv2.HoughCircles...而不是HOUGH_GRADIENT // 遍历检测到的每个圆 for (size_t i = 0; i < circles.size(); i++) {...转换为灰度图像 取一定区域进行操作 高斯滤波去噪 Canny 边缘检测 HoughCircles 霍夫曼圆找圆 画图 在找到圆中可以添加一些过滤条件,过滤一些误检的圆。...最终通过计算结果,270帧图片检测结果,共400左右个井盖,分类正确率高达99% 2.2、管线 识别管线、跟踪+定位、发送消息给规控。 如图中绳子、管子等。

    33110

    【走进OpenCV】霍夫变换检测直线和圆

    , 150, 0, 0); //这里注意第五个参数,表示阈值,阈值越大,表明检测的越精准,速度越快,得到的直线越少(得到的直线都是很有把握的直线) //这里得到的lines是包含rho和...阈值我设为250,看看直线检测的效果。你会发现,怎么图中一些很明显的直线都没检测出来啊?原因是,我们阈值设置的有点高,只有那些有足够的把握认为是直线的直线才可能检测出来。 ?...霍夫圆变换 刚刚的霍夫变换是检测直线的,如果我们想检测圆形,那该怎么办?那就用霍夫圆变换!用法也大同小异。...; HoughCircles(midImage, circles, CV_HOUGH_GRADIENT, 1.5, 10, 200, 150, 0, 0); //注意第七的参数为阈值,可以自行调整...另外提一点,霍夫圆变换的检测速度很慢,显然进行圆检测的计算量还真不少! ?

    2K20

    Halcon缺陷检测实例转OpenCV实现(六) 瓶口缺陷检测

    本期文章继续介绍缺陷检测专题的第六个案例,用OpenCV实现Halcon中一个瓶口缺陷检测的实例,前面案例链接如上↑↑↑。...Halcon实例主要步骤包含五步,分别是: 使用阈值处理和形态学粗定位品口位置; XLD轮廓拟合最近似的圆形区域作为瓶口的轮廓; 极坐标变换,转换到水平或垂直方向进行处理; 均值滤波图与原图做差分,根据阈值提取...提取黑色轮廓的方法,然后通过计算轮廓的最小外接圆来近似,大部分效果还可以,如下: ?...但有一些情况圆边上多出一部分杂讯,如下: ? Halcon中通过拟合圆算子可以过滤,OpenCV中需要自己写 ?...这里的重点就是基于上一步骤要准确找到圆,将圆心作为极坐标变换的中心。

    4.4K21

    OpenCV4系统化学习路线图(新版)

    它使用C++编写,同时也提供了Python、Java、MATLAB等语言的接口,方便不同编程语言的开发者使用。...由于OpenCV的开源性和跨平台性,它已经成为计算机视觉领域最受欢迎的库之一,广泛应用于工业检测、医学影像处理、智能交通系统、安防监控系统、机器人视觉、游戏开发等领域。...功能提升:imgproc模块中的霍夫变换进行圆检测的HoughCircles()函数新增了HOUGH_GRADIENT_ALT实现,显著提高了圆检测的召回率和精度。...3、Visual Studio中添加目录和依赖项:打开Visual Studio,创建一个新的C++项目。...4、测试配置:创建一个C++源文件,编写简单的代码来测试摄像头读取或图像显示功能。如果程序能够正确运行并显示图像或视频流,则说明OpenCV环境配置成功。

    61310

    HoughCircle找圆总结——opencv

    Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆;反观拟合圆算法...;为了提高找圆精度,相比拟合法,需要提供更多的参数加以控制,参数要求比较严格,且总体稳定性不佳 OpenCV内的HoughCircles对基础的Hough变换找圆做了一定的优化来提高速度,它不再是在参数空间画出一个完整的圆来进行投票...,默认排序下得分最高的几个圆如左图: 貌似默认最好的圆并没有任何改善 很多初次使用该函数的看到这,或许就就觉得HoughCircles效果不咋地。。。...但究其算法优化本身,轮廓梯度定位出来的圆心投票本来精度就低(如图2),自然找出来的圆会有很多是错误的,但如果轮廓点足够多,找出的正确的圆必定也是存在的,只是按照票数方法来评价可能排序会比较靠后,但毕竟也是出现了的...;此处只需做个小小的优化,改下评价方法,优化下排序,结果就很接近了 这是经过优化排序方法后找出的最好的圆 找出来的圆中与实际轮廓重合度最高的圆一般就是我们要找的圆;因此我们可以通过HoughCircles

    1.6K31

    OpenCV图像处理笔记(三):霍夫变换、直方图、轮廓等综合应用

    2、相关API cv::HoughCircles 因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。...基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步: 检测边缘,发现可能的圆心 基于第一步的基础上从候选圆心开始计算最佳半径大小 c++ HoughCircles( InputArray...//最大半径 ) 示例代码 c++ Mat src, dst; src = imread("C:\\Users\\Administrator\\Pictures\\霍夫圆检测4.jpg"); imshow...int method,//使用的匹配方法 InputArray mask=noArray()//(optional) ) 示例代码 c++ #includeopencv2\opencv.hpp...计算每个对象的中心、弧长、面积 示例代码 c++ #includeopencv2\opencv.hpp> #include using namespace std; using

    3.5K20

    【CV 向】如何打造一个“数串串神器“

    Blob Detection算法的参数可以根据具体的应用场景和图像特征进行调整。常见的参数包括最小阈值、最大阈值、斑点面积阈值、形状过滤等。这些参数的调整可以影响斑点的检测率和准确性。...圆检测:在累加器数组中找到具有高累加值的位置,这些位置对应于可能的圆心和半径组合。这些位置表示了图像中存在的圆。 阈值和非最大抑制:根据设定的阈值,筛选出累加值高于阈值的圆。...对于相邻的圆,进行非最大抑制,保留具有最高累加值的圆,抑制其他圆。 绘制圆:根据筛选出的圆心和半径,在原始图像上绘制检测到的圆。...edges = cv2.Canny(gray, 50, 150) # 霍夫圆变换 circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, dp=25...总结 在本文中,我们介绍了使用OpenCV和深度学习来解决数钢管和数串串的问题,使用OpenCV的Blob Detection和Hough Circle技术对钢管以及串串进行检测,并使用轮廓分析对钢管进行计数

    80020
    领券