您可以将 Apache HBase 工作负载从 CDH 和 HDP 迁移到 CDP。要成功迁移 Apache HBase 工作负载,您必须首先了解两个平台之间的数据管理差异,并准备好源数据以与目标 CDP 平台兼容。
有关HBase集群如何做不停服的数据迁移一直都是云HBase被问的比较多的一个问题,目前有许多开源的工具或者HBase本身集成的方案在性能、稳定性、使用体验上都不是很好,因此阿里云提供了BDS迁移服务,可以帮助云上客户实现TB级数据规模不停机迁移
一、业务背景: 业务方需要搭建一套hbase集群,数据来源是hive表。 集群数据规模:每天4.5kw个key,420亿条左右数据,平均每个key每天1000个记录。每天总数据量1.2T左右,3备份需要存储2年约2.5P。 为响应公司业务上云,通过腾讯云上EMR搭建hbase集群。hive集群是在IDC机房,和普通集群迁移相比,这涉及到跨机房、跨集群的数据迁移,以及hive表数据到hbase集群数据的转换。 二、技术方案步骤 1、IDC机房与EMR网络的联通性验证
从上面图中可看出,目前的方案主要有四类,Hadoop层有一类,HBase层有三类。下面分别介绍一下。
---- 环境准备 服务器集群 我用的CentOS-6.6版本的4个虚拟机,主机名为hadoop01、hadoop02、hadoop03、hadoop04,另外我会使用hadoop用户搭建集群(生产环境中root用户不是可以任意使用的) 关于虚拟机的安装可以参考以下两篇文章: 在Windows中安装一台Linux虚拟机 通过已有的虚拟机克隆四台虚拟机 服务器集群中已经搭建了hadoop集群(完全分布式和HA集群都可以) 参考 Hadoop完全分布式集群搭建 Hadoop高可用(HA)集群
由于Kylin的本身架构(广播特性)和业务特点通常不适用于单套Kylin集群的节点过多,通常大家采用拆分Kylin集群但是共用底层的Hbase集群和计算集群的方式进行部署。本文主要根据目前咱们的实践经验对于此种场景集群配置进行分享,希望对大家有所帮助。
内容来源:2018 年 09 月 15 日,平安科技数据平台部大数据高级工程师邓杰在“中国HBase技术社区第五届MeetUp ——HBase应用与发展”进行《HBase应用与实践》的演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
ZooKeeper作为分布式协调组件,在大数据领域的其他分布式组件中往往扮演着重要的辅助角色,因此我们就算不单独去研究ZooKeeper,也短不了要接触它。本文就以最典型的HBase为例,简要介绍ZooKeeper为HBase提供了哪些功能。
摘要:HBase自带许多运维工具,为用户提供管理、分析、修复和调试功能。本文将列举一些常用HBase工具,开发人员和运维人员可以参考本文内容,利用这些工具对HBase进行日常管理和运维。
“ 本文介绍在云端kylin数据迁移的实现方案以及在迁移过程中的遇到哪些问题,并给出了问题解决方案.本次迁移中涉及到的hbase cube表1600+,model数量80+,project 10+”
这里搭建一个 3 节点的 HBase 集群,其中三台主机上均为 Region Server。同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop002 上部署备用的 Master 服务。Master 服务由 Zookeeper 集群进行协调管理,如果主 Master 不可用,则备用 Master 会成为新的主 Master。
时间回到2011年,Hadoop作为新生事物,在阿里巴巴已经玩得风生水起,上千台规模的"云梯"是当时国内名声显赫的计算平台。 这一年,Hadoop的好兄弟HBase由毕玄大师带入淘宝,开启了它的阿里之旅。从最初的淘宝历史交易记录,到去年的支付宝消费记录存储在线历史存储统一;从蚂蚁安全风控的多年存储演进,到HBase、TT、Galaxy的大数据激情迭代;HBase在阿里经历过年轻的苦涩,释放过青春的活力,也付出过成长的代价。几代人的不懈努力下,五年陈的HBase开始表现出更成熟、更完善、更丰富的一面,成为公司内部被广泛使用的存储产品之一。 经过阿里集团内部的锤炼,集团将这个技术红利输送给广大阿里云客户。现已推出云数据库HBase产品,支持海量的PB级的大数据存储,适用于高吞吐的随机读写的场景。
Cloudera数据平台(CDP)是Cloudera的最新大数据产品。Apache HBase和Phoenix作为CDP平台的一部分。这两个组件以3种形态提供:
因为列族在创建表的时候是确定的,列名以列族作为前缀,按需可动态加入,如: cf:name, cf:age
HBase是一个分布式的、面向列的开源数据库,一个结构化数据的分布式存储系统。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。
从 1970 年开始,大多数的公司数据存储和维护使用的是关系型数据库,大数据技术出现后,很多拥有海量数据的公司开始选择像Hadoop的方式来存储海量数据。
由于 HBase 是以 HDFS 作为底层存储文件系统的,因此部署好 Hadoop 并启动服务是 HBase 部署的先决条件。我们将在《第三篇:Hadoop部署配置及运行调试(下) - HA完全分布式》中部署的 Hadoop 上,以完全分布式模式来安装部署并运行 HBase.
使用过开源HBase的人都知道,运维HBase是多么复杂的事情,集群大的时候,读写压力大,配置稍微不合理一点,就可能会出现集群状态不一致的情况,糟糕一点的直接导致入库、查询某个业务表不可用, 甚至集群运行不了。在早期0.9x版本的时候,HBase的修复工具还有一下bug,使得即使你懂得如何修复的情况下,依然需要多次重复运行命令,绕过那些不合理的修复逻辑,甚至有时候需要自己写代码预先修复某个步骤。
HBase在不开启授权的情况下,任何账号对HBase集群可以进行任何操作,比如disable table/drop table/major compact等等。
HBase集群一旦部署使用,再想对其作出调整需要付出惨痛代价,所以如何部署HBase集群是使用的第一个关键步骤。
注意:要把hadoop的hdfs-site.xml和core-site.xml 放到hbase/conf下
云栖君导读: 使用过开源HBase的人都知道,运维HBase是多么复杂的事情,集群大的时候,读写压力大,配置稍微不合理一点,就可能会出现集群状态不一致的情况,糟糕一点的直接导致入库、查询某个业务表不可用, 甚至集群运行不了。在早期0.9x版本的时候,HBase的修复工具还有一下bug,使得即使你懂得如何修复的情况下,依然需要多次重复运行命令,绕过那些不合理的修复逻辑,甚至有时候需要自己写代码预先修复某个步骤。 背景 上周五,某公司使用的某DataHup 大数据产品自建一个HBase集群挂了!整个集群有30+
在之前的这篇博文《Cloudera 复制插件为Hbase启用平台复制》中,我们提供了Cloudera Replication Plugin的高级概述,解释了它如何通过很少的配置实现跨平台复制。在这篇文章中,我们将介绍如何在 CDP 集群中应用此插件,并解释该插件如何在不共享相互身份验证信任的系统之间启用强身份验证。
完全分布式基于hadoop集群和Zookeeper集群。所以在搭建之前保证hadoop集群和Zookeeper集群可用。可参考本人博客地址
某客户大数据测试场景为:Solr类似画像的数据查出用户标签——通过这些标签在HBase查询详细信息。以上测试功能以及性能。 其中HBase的数据量为500G,Solr约5T。数据均需要从对方的集群人工
在大数据领域,数据量持续增长,数据类型和来源也变得越来越复杂。传统的数据仓库和分析工具很难满足大规模数据处理和实时分析的需求。为了解决这些问题,Apache Kylin应运而生。
本文只讲一个很简单的问题,YCSB对HBase集群的测试。虽然网上有很多介绍YCSB测试HBase的文章,但都是针对本地HBase伪分布式集群的。大家都知道,稍微正式一些的压测都会要求测试客户端与目标集群分离部署,而且伪分布式集群通常不会在生产环境下使用,本身也没有太大的压测意义。本文会着重介绍一下压测远程HBase完全分布式集群的不同之处。
本文对HBase常用的数据导入工具进行介绍,并结合云HBase常见的导入场景,给出建议的迁移工具和参考资料。
大数据集群搭建之Linux安装hadoop3.0.0_qq262593421的博客-CSDN博客
HBase是建立在Hadoop文件系统之上的分布式面向列的数据库,它是横向扩展的。它利用了Hadoop的文件系统(HDFS)提供的容错能力。 HBase提供对数据的随机实时读/写访问,可以直接HBase存储HDFS数据。 准备 安装JDK1.8+ 下载 hbase-2.0.0-beta-1-bin.tar.gz 包,并解压到 /apps/目录下。 修改 conf/hbase-env.sh 文件,设置 JAVA_HOME 变量 export JAVA_HOME=/opt/jdk1.8.0_112 单机模式 单
我在 hadoop001、hadoop002 和 hadoop003 节点上安装了 HBase 集群,其中 hadoop001 和 hadoop002 为 HMaster,hadoop002 和 hadoop003 为 HRegionServer,启动 HBase 后,发现 hadoop002 的 HMaster 和 HRegionServer 进程正常启动,hadoop003 上的 HRegionServer 正常启动,但 hadoop001 上的 HMaster 进程却没有启动,查看 hadoop001 节点上的 HBASE_HOME/logs/hbase-hadoop-master-hadoop001.log 日志文件发现如下报错:
hbase是基于hdfs进行数据的分布式存储,具有高可靠、高性能、列存储、可伸缩、实时读写的nosql数据库。
HBase自身也提供了ExportSnapshot的方法可以从HDFS文件层基于某个快照快速的导出HBase的数据,并不会对RegionServer造成影响,但该源生的方法不支持增量。
参考博客:Hadoop HBase概念学习系列之HBase里的Zookeeper(二十一)
在分布式系统中,负载均衡是一个非常重要的功能,HBase通过Region的数量实现负载均衡,即通过hbase.master.loadbalancer.class实现自定义负载均衡算法。下面将为大家剖析HBase负载均衡的相关内容以及性能指标。
一、环境描述 我的生产环境ZooKeeper 版本3.4.6,5个节点组成的ZooKeeper集群。ZooKeeper集群为一套8个节点的Hadoop集群和HBase 集群提供高可用保障。 二、问题描述 因为某些特殊原因,需要替换掉myid为5(IP:10.10.10.30)的ZooKeeper节点,故障节点IP:10.10.10.30替换为10.10.10.37。10.10.10.37节点是现有环境的namenode节点,Hadoop用户、相关目录,授权、hosts文件已经满足ZooKeeper的部署要求
该文档主要通过使用HBase快照导出历史全量数据并还原到新的HBase集群,然后改造源生的ExportSnapshot类,通过比较变化的文件实现导出增量,并最终实现HBase跨集群的增量备份和还原。
前段时间总结了一篇关于HBase由于分区过多导致集群宕机的文章,感兴趣的同学可以点击原文《HBase案例 | 20000个分区导致HBase集群宕机事故处理》阅读参考。本文重点参考HBase官网,从分区过多这个角度出发,进一步聊一聊HBase分区过多的影响以及单节点合理分区数量等。
随着越来越多的业务选择HBase作为存储引擎,对HBase的可用性要求也越来越高,对于HBase的运维也提出了新的挑战。目前运维集群超过30+,而且接入的业务类型繁多,对于性能要求也不完全一样,这是今年面临的问题。从15年开始,结合京东的业务情况,基于大数据平台,实现用户接入使用全流程自动化。而今年,我们主要从集群层面上提升集群可用性。 1 控制隔离——rsgroup 在94版本中,经常困扰我们的一个问题就是集群上的某些机器会因为某些用户的不恰当操作,例如热点问题,大量的scan操作等导致机器上的其他表正常
个推作为专业的数据智能服务商,在业务开展过程中存在海量的数据存储与查询的需求,为此个推选用了高可靠、高性能、面向列、可伸缩的分布式数据存储系统——HBase。
近日,Pinterest 品趣志的工程团队最近公布了弃用 HBase 集群的流程规划,理由是该方案基础设施建设与维护成本过高、HBase 专业人才难寻以及产品功能不足。而随着 Pinterest 也转向 Druid/StarRocks、Goku、KVStore、TiDB 等数据库技术,技术社区开始质疑在 Hadoop 和 HDFS 之上运行非关系数据库的作法是否正迅速衰落。
之前的系列文章当中,已经为大家介绍了大数据存储当中的MongoDB、Redis等数据库,今天接着来讲Hbase。Hbase在大数据存储当中,与Hadoop生态紧密相关,也是Hadoop生态当中必学的重要组件。下面我们从基础入门开始,来讲讲Hbase。
HBase 是Hadoop生态里重要一员。对HBase的调优,对节约成本,提升用户体验有重要意义。
HBCK2工具是修复工具,可用于修复Apache HBase集群,包括CDP中的Apache HBase集群。HBCK2工具是Apache HBase hbck工具的下一版本。
HBase是基于Hadoop的分布式的、面向列的、可拓展的开源数据库。当需要对大数据进行随机的、实时的读写时使用HBase。属于NoSQL。HBase利用Hadoop/HDFS作为其文件存储系统,利用Hadoop/MapReduce来处理HBase中的海量数据,利用Zookeeper提供分布式协作、分布式同步、配置管理等。
Apache ZooKeeper 是一个面向分布式应用程序的高性能协调服务器。要实现Hbase全分布式安装,需要安装ZooKeeper,当然后面kafka也需要安装这个东西。
集群建备份,它是master/slaves结构式的备份,由master推送,这样更容易跟踪现在备份到哪里了,况且region server是都有自己的WAL 和HLog日志,它就像mysql的主从备份结构一样,只有一个日志来跟踪。一个master集群可以向多个slave集群推送,收到推送的集群会覆盖它本地的edits日志。 这个备份操作是异步的,这意味着,有时候他们的连接可能是断开的,master的变化不会马上反应到slave当中。备份个格式在设计上是和mysql的statement-based r
腾讯云某客户的开发者反馈,大数据集群的hbase读写非常缓慢。我们使用测试程序,也复现该问题。因此,我们需要对hbase集群进行全面检测。
领取专属 10元无门槛券
手把手带您无忧上云