首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    再介绍一篇最新的Contrastive Self-supervised Learning综述论文

    自监督学习(Self-supervised learning)最近获得了很多关注,因为其可以避免对数据集进行大量的标签标注。它可以把自己定义的伪标签当作训练的信号,然后把学习到的表示(representation)用作下游任务里。最近,对比学习被当作自监督学习中一个非常重要的一部分,被广泛运用在计算机视觉、自然语言处理等领域。它的目标是:将一个样本的不同的、增强过的新样本们在嵌入空间中尽可能地近,然后让不同的样本之间尽可能地远。这篇论文提供了一个非常详尽的对比自监督学习综述。 我们解释了在对比学习中常用的前置任务(pretext task),以及各种新的对比学习架构。然后我们对不同的方法做了效果对比,包括各种下游任务例如图片分类、目标检测、行为识别等。最后,我们对当前模型的局限性、它们所需要的更多的技术、以及它们未来的发展方向做了总结。

    03

    AAAI'22 | "简单"的无监督图表示学习

    今天给大家介绍的是电子科技大学石小爽教授团队于2022年发表在AAAI上的一篇论文:“Simple Unsupervised Graph Representation Learning ”。作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习。具体而言,通过构造多重损失探索结构信息与邻域信息之间的互补信息来扩大类间变化,并通过增加一个上限损失来实现正嵌入与锚嵌入之间的有限距离来减小类内变化。因此,无论是扩大类间变异还是减少类内变异,都能使泛化误差很小,从而得到一个有效的模型。此外,作者的方法消除了以往图对比学习方法中广泛使用的数据增强和鉴别器,同时可以输出低维嵌入,从而得到一个高效的模型。在各种真实数据集上的实验结果表明,与最先进的方法相比,该方法是有效和高效的。

    01

    X射线图像中的目标检测

    每天有数百万人乘坐地铁、民航飞机等公共交通工具,因此行李的安全检测将保护公共场所免受恐怖主义等影响,在安全防范中扮演着重要角色。但随着城市人口的增长,使用公共交通工具的人数逐渐增多,在获得便利的同时带来很大的不安全性,因此设计一种可以帮助加快安全检查过程并提高其效率的系统非常重要。卷积神经网络等深度学习算法不断发展,也在各种不同领域(例如机器翻译和图像处理)发挥了很大作用,而目标检测作为一项基本的计算机视觉问题,能为图像和视频理解提供有价值的信息,并与图像分类、机器人技术、人脸识别和自动驾驶等相关。在本项目中,我们将一起探索几个基于深度学习的目标检测模型,以对X射线图像中的违禁物体进行定位和分类为基础,并比较这几个模型在不同指标上的表现。

    02
    领券