首页
学习
活动
专区
圈层
工具
发布

FastAPI(8)- 请求体 Request Body

前言 接口传参方式之一:通过发送请求体(Request Body)来传递请求数据 在 FastAPI,提倡使用 Pydantic 模型来定义请求体 这篇文章会详细讲不使用 Pydantic 和 使用 Pydantic...JSON 字符串转换为 dict 这种场景下,虽然查询参数叫 item,但请求体的字段名可以随意取,字段数量也可以任意个 错误传参的请求结果 选了 text 之后,因为不是 JSON 字符串,FastAPI...会对每一个键值对都做数据校验,校验失败会有友好的错误提示 正确传参的请求结果 校验失败的请求结果 友好的错误提示啊~ 使用 Pydantic 模型(建议使用) 实际栗子 from fastapi...(item: Item): return item 参数指定为 Pydantic 模型后,FastAPI 做了这几件事 将请求体识别为 JSON 字符串 将字段值转换相应的类型(若有需要) 验证数据...,如果验证失败,会返回一个清晰的错误,准确指出错误数据的位置和信息 item 会接收到完整的请求体数据,拥有所有属性及其类型,IDE 也会给予对应的智能提示 给 Pydantic 模型自动的生成 JSON

4.4K20

FastAPI从入门到实战(0)——初识FastAPI

更少 bug:减少约 40% 的人为(开发者)导致错误。 智能:极佳的编辑器支持。处处皆可自动补全,减少调试时间。 简单:设计的易于使用和学习,阅读文档的时间更短。 简短:使代码重复最小化。...FastAPI特性 基于开放标准 用于创建 API 的 OpenAPI 包含了路径操作,请求参数,请求体,安全性等的声明。...所有的参数被微调,来满足你的需求,定义成你需要的 API。 但是默认情况下,一切都能“顺利工作”。 验证 校验大部分(甚至所有?)的 Python 数据类型,包括: JSON 对象 (dict)....Pydantic 特性 FastAPI 和 Pydantic 完全兼容(并基于)。所以,你有的其他的 Pydantic 代码也能正常工作。...可扩展: Pydantic 允许定义自定义数据类型或者你可以用验证器装饰器对被装饰的模型上的方法扩展验证。 100% 测试覆盖率。

4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    FastAPI基础-请求体验证(一)

    由于请求体是来自客户端的数据,因此在接收和处理请求体时需要对数据进行验证,以确保数据符合预期。在FastAPI中,我们可以使用Pydantic模块来验证请求体数据。...我们可以使用pip来安装Pydantic:pip install pydantic安装完成后,我们需要在FastAPI应用程序中导入Pydantic模块:from fastapi import FastAPIfrom...pydantic import BaseModel定义请求体模型在FastAPI中,我们可以通过继承Pydantic的BaseModel来定义请求体模型。...在FastAPI中,我们可以使用@router.post装饰器来处理POST请求,并使用请求体模型作为参数来验证请求体数据。...该函数的参数user是我们之前定义的User请求体模型。当客户端向服务器发送POST请求时,FastAPI会自动使用User模型对请求体数据进行验证。

    77000

    全面拥抱FastApi —三大参数及验证

    更少的错误:减少约40%的人为错误(开发人员)。 直观:强大的编辑器支持,程序调试时间更少。 简易:易于使用和学习,减少阅读文档的时间。 短:最小化重复代码,每个参数声明中的多个功能,减少编码错误。...前面说过 FastApi 的一大特点是基于标准的 Python 3.6类型声明,兼具参数校验功能,这一切都要归功于 Pydantic 路径参数 路径参数即 url 路径参数,可以使用 Python 格式字符串相同语法声明路径...item_id 的值是 "test" 不能转为 int,这就是参加验证 查询参数 查询参数也是带在 url 地址中的,是 url 中位于 ?...其中还有一个是路径参数:item_id, str 类型 请求体参数 要发送请求正文,必须使用一个:POST, PUT,DELETE或PATCH,需导入 Pydantic 的 BaseModel from...验证数据,如果数据无效,它将返回一个清晰的错误,指出错误数据的确切位置和来源 在参数中接收收到的数据 item,并能获取所有属性及所有编辑器的支持 ?

    5.6K30

    FastAPI(10)- 详解 Body

    前言 上一篇有讲到将参数类型指定为 Pydantic Model,这样 FastAPI 会解析它为一个 Request Body 那单类型(int、float、str、bool...)参数可以成为 Request...答案是可以的 通过 Body 函数即可完成,和 Path、Query 有异曲同工之妙 文章跳转 Query Path Request Body Body 主要作用:可以将单类型的参数成为 Request...Optional import uvicorn from fastapi import Body, FastAPI from pydantic import BaseModel app = FastAPI...为什么要讲这个 embed 参数 当函数只有一个参数指定了 Pydantic Model 且没有其他 Body 参数时,传参的时候请求体可以不指定参数名 class Item(BaseModel):...就是通过 embed 参数达到目的了 实际代码 from typing import Optional from fastapi import Body, FastAPI from pydantic

    2.9K30

    关于 FastAPI 路径参数,你知道多少?

    并且提供了灵活的路由匹配和处理,还支持类型转换和验证,使你能够 构建强大和可靠的 API 2.2 路径参数的基本使用 2.2.1 无类型的路径参数 from fastapi import FastAPI...2.3路径参数高级用法 2.3.1 Pydantic 模型(请求体)作为路径参数 在 FastAPI 中,使用 Pydantic 模型作为路径参数的优势主要体现在以下几个方面: 类型转换和验证:通过使用...Pydantic 模型作为路径参数,你可以指定参数的类型,并利用 Pydantic 的验证规则来确保传入的参数值符合预期的格式和约束。...代码重用和可维护性:使用 Pydantic 模型作为路径参数可以提高代码的重用性和可维护性。你可以在多个路由中使用相同的模型作为路径参数,避免了重复定义和验证参数的过程。...这样,如果需要更改参数的类型或验证规则,你只需要修改模型的定义,而不必在多个地方修改代码。 更清晰的代码结构:通过使用 Pydantic 模型作为路径参数,可以使代码结构更清晰和可读。

    23310

    FastAPI 学习之路(八)

    FastAPI 系列文章: FastAPI 学习之路(一) FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四)使用pydantic模型做请求体...这次我们看下请求体有多个参数如何处理。 正文 别的不多说,我们先写一个需求,然后演示下如何展示。 需求:写一个接口,传递以下参数,书本的名称,描述,价格,打折。...我们可以看到没有默认值的参数就是一个必须的。不然接口会返回对应的错误。...除了声明以上单个的,我们还可以声明多个请求体参数,比如我们可以在之前的需求,增加一个返回,要求返回作者,和作者的朝代。如何实现呢。...,返回错误 参数必须放在body内请求。

    55510

    FastAPI 学习之路(二十一)请求体 - 更新数据

    FastAPI 系列文章: FastAPI 学习之路(一) FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四)使用pydantic模型做请求体...FastAPI 学习之路(十一) FastAPI 学习之路(十二)额外数据类型 FastAPI 学习之路(十三)Cookie 参数,Header参数 FastAPI 学习之路(十四)响应模型...(十九)处理错误 FastAPI 学习之路(二十)接口文档配置相关 前言 我们之前分享一些配置,这次分享一下请求体去更新数据。...正文 我们都知道,去创建请求体,更新数据我们用PUT请求,我们去试着更新下数据。 我们有一组数据,我们要更新描述。...模型的 .dict() 中使用 exclude_unset 参数。

    1K50

    FastAPI 学习之路(四)使用pydantic模型做请求体

    FastAPI 系列文章: FastAPI 学习之路(一) FastAPI 学习之路(二) FastAPI 学习之路(三) 前言 我们之前的文章分享了,如何增加参数...---- 我们去写一个例子,去定义一下请求体 from typing import Optional from fastapi import FastAPI from pydantic...从结果中,我们可以看出,当我们没有传递参数的时候,默认是null,那么我看下如果我们没有定义可选属性的不传递,接口会怎么返回给我们呢。 ? 我们可以看到,接口已经返回了对应的错误。...接口返回的是一个类型错误,因为后台在处理的时候呢,默认转化了类型,转化失败,就直接fastapi自动处理完毕了。并且返回了统一格式的返回值。 我们看下接口文档。 ?...from typing import Optional from fastapi import FastAPI from pydantic import BaseModel class Item(BaseModel

    2.4K40

    fastapi 响应模型 响应状态码 表单参数

    from typing import Optional, List from fastapi import Cookie, FastAPI, Header from pydantic import BaseModel...import Cookie, FastAPI, Header from pydantic import BaseModel, EmailStr app = FastAPI() class UserIn...import Cookie, FastAPI, Header from pydantic import BaseModel, EmailStr app = FastAPI() class Item...具有这些状态码的响应可能有或者可能没有响应体,但 304「未修改」是个例外,该响应不得含有响应体。 400 及以上状态码用于「客户端错误」响应。这些可能是你第二常使用的类型。...对于来自客户端的一般错误,你可以只使用 400。 500 及以上状态码用于服务器端错误。你几乎永远不会直接使用它们。当你的应用程序代码或服务器中的某些部分出现问题时,它将自动返回这些状态代码之一。

    1.1K30

    FastAPI学习-9. Swagger文档输出请求示例example

    Optional from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel...Field 的附加参数 在 Field, Path, Query, Body 和其他你之后将会看到的工厂函数,你可以为JSON 模式声明额外信息,你也可以通过给工厂函数传递其他的任意参数来给JSON 模式声明额外信息...,比如增加 example: from typing import Optional from fastapi import FastAPI from pydantic import BaseModel...item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results 请记住,传递的那些额外参数不会添加任何验证...比如,你可以将请求体的一个 example 传递给 Body: from typing import Optional from fastapi import Body, FastAPI from pydantic

    4.6K30

    FastAPI(14)- 路径操作函数参数的类型是一个嵌套 Pydantic Model 的使用场景

    带有类型参数的字段 Python 有一种特定的方法来声明具有内部类型或类型参数的列表 其实前面都见过,就是 List[str] Set[str] Tuple[str] Dict[str, int] List...import BaseModel from fastapi import FastAPI app = FastAPI() class Item(BaseModel): name: str...": uvicorn.run(app="12_model:app", host="127.0.0.1", port=8080, reload=True, debug=True) 期望得到的请求体...集合的特性仍然会保留:去重 FastAPI 给嵌套模型提供的功能 和前面讲的没什么区别 IDE 智能代码提示,甚至对于嵌套模型也支持 数据转换 数据验证 OpenAPI 文档 正确传参的请求结果 校验失败的请求结果...from pydantic import BaseModel app = FastAPI() # 模型一 class Image(BaseModel): url: str name

    88320

    fastapi 请求体 - 多个参数 字段Field 嵌套模型

    混合使用 Path、Query 和请求体参数 2. 多个请求体参数 3. 请求体中的单一值 4. 多个请求体参数和查询参数 5. 嵌入单个请求体参数 6. 字段 7....混合使用 Path、Query 和请求体参数 from fastapi import FastAPI, Path from typing import Optional from pydantic import...多个请求体参数 from pydantic import BaseModel class Item(BaseModel): name: str price: float description...多个请求体参数和查询参数 由于默认情况下单一值被解释为查询参数,因此你不必显式地添加 Query,你可以仅执行操作:q: str = None 5....字段 可以使用 Pydantic 的 Field 在 Pydantic 模型内部声明校验和元数据 from fastapi import FastAPI, Path, Body from typing

    2.1K20

    【机器学习】GLM-4V:图片识别多模态大模型(MLLs)初探

    封装GLM-4V大模型服务接口 3.1 FastAPI 极简入门 搭建1个FastAPI服务依赖fastapi、pydantic、uvicorn三个库: 3.1.1 FastAPI FastAPI是一个现代...它基于标准的Python类型提示,提供自动的交互式文档和数据验证。...3.1.3 pydantic Pydantic是一个Python库,用于数据验证和设置管理。它被广泛用于FastAPI中,用于定义请求和响应模型,以进行数据验证和解析。...应用实例 app = FastAPI() # 定义请求体模型,与OpenAI API兼容 class ChatCompletionRequest(BaseModel): model: str...:通过app=FastAPI()创建fastapi实例 定义请求体模型:继承pydantic的BaseModel,参数需要兼容OpenAI API 从主函数开始看:通过uvicorn.run启动Fastapi

    1.2K10
    领券