首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

DP中的硬币制作问题--用二维记忆表求出错误答案

DP中的硬币制作问题,是一个经典的动态规划问题。该问题要求计算制作特定金额的硬币所需的最少硬币数量,假设有不同面值的硬币可供选择。

为了解决该问题,可以使用动态规划算法,其中关键的思想是将问题拆解为子问题,并利用子问题的解构建出最终问题的解。

以下是解决该问题的详细步骤:

  1. 定义状态:将金额从1逐步增加到目标金额,定义一个长度为目标金额的状态数组dp[],其中dp[i]表示金额为i时所需的最少硬币数量。
  2. 初始化状态数组:将dp[]的所有元素初始化为无穷大,除了dp[0]的值初始化为0(金额为0时不需要任何硬币)。
  3. 状态转移方程:对于每个金额i,遍历硬币面值数组,求解dp[i]的最小值。具体的转移方程为:dp[i] = min(dp[i], dp[i-coin] + 1),其中coin表示当前遍历的硬币面值。
  4. 遍历完所有金额和硬币面值后,dp[目标金额]即为所需的最少硬币数量。

通过上述步骤,可以得到目标金额所需的最少硬币数量。该问题的时间复杂度为O(amount * coin_count),其中amount表示目标金额,coin_count表示硬币面值的个数。

下面是一些相关的名词和概念解释:

  • 动态规划:动态规划是一种将复杂问题分解成较小子问题并逐个求解的方法。它通过存储子问题的解来避免重复计算,从而提高效率。
  • 二维记忆表:二维记忆表是动态规划中一种常见的数据结构,用于存储子问题的解。通常使用二维数组来表示,其中每个元素存储对应子问题的解。
  • BUG:BUG是指程序或系统中存在的错误或缺陷。在开发过程中,常常需要进行软件测试以及修复BUG,确保系统的稳定性和可靠性。
  • 云计算:云计算是一种基于互联网的计算模式,通过将计算资源和服务提供给用户,实现按需使用、弹性扩展和共享资源的目标。它可以提供灵活的计算能力和存储空间,推动数字化转型和业务创新。
  • IT互联网:IT互联网是指信息技术与互联网的结合。它涵盖了计算机技术、通信技术、互联网技术等方面,对人们的生活和工作产生了深远的影响。
  • 腾讯云:腾讯云是腾讯公司推出的云计算服务平台,为用户提供弹性计算、存储和数据库、网络和CDN、人工智能、区块链等全方位的云服务。详细信息可参考腾讯云官方网站:https://cloud.tencent.com/

以上是针对DP中的硬币制作问题的答案,希望能对您有所帮助。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

leetcode 322. 零钱兑换

零钱兑换解法汇总 3.BFS---广度优先遍历 2.动态规划 3.记忆化递归 4.套「完全背包」问题公式 总结 原题链接: leetcode 322....事实上,可以 直接面对问题求解 ,即「自顶向下」,但是这样问题有 重复子问题,需要缓存已经求解过答案,这叫 记忆化递归。...首先在编程不像生活中一样,我给你一个钱包让你最少硬币数组成2元,并且此时我只给你1元硬币和2元硬币,你知道选2构成2。...在编程我们首先要求出最小子问题,即钱包里面一分钱都不放结果为0个硬币,显而易见。...下面通过最小子问题求出钱包必须放刚刚好一块钱时结果,dp[1]=dp[0]+1—假设此时我们位于堆满一元硬币房间内,显然结果为1。

36610

leetcode 518. 零钱兑换 II-----完全背包套路模板

零钱兑换,我们求是「取得特定价值所需要最小物品个数」。 对于本题,我们求是「取得特定价值方案数量」。 求东西不一样,但问题本质没有发生改变,同样属于「组合优化」问题。...注意题目描述是凑成总金额硬币组合数,为什么强调是组合数呢? 例如示例一: 5 = 2 + 2 + 1 5 = 2 + 1 + 2 这是一种组合,都是 2 2 1。...那么就是先把1加入计算,然后再把5加入计算,得到方法数量只有{1, 5}这种情况。而不会出现{5, 1}情况。 所以这种遍历顺序dp[j]里计算是组合数!...---- 记忆化搜索解法 递归结束条件:凑出了目标钱数,找到了一种方案,返回1 , 或者枚举完了所有硬币,即越界了,说明当前没有可行方案,返回0 递归返回值:返回当前方案数 本级递归做什么:遍历硬币数组...可能存在方案数进行累加求和 注意暴力递归会超时,这里还需要用依赖哈希来存储已经求出结果,防止重复计算 其实如果递归解,最好方法还是把问题转化为多叉树遍历,比较容易理解 那么重复计算是从哪里来

37140
  • 牛逼了,原来大神都是这样学动态规划...

    如图示:从 2 走到最底下最短路径为 2+3+5+1 = 11,即为我们所求 首先我们需要用一个二维数组来表示这个三个角形节点,二维数组显然可以做到, 第一行 2 a[0][0] 表示,第二行元素...一、判断是否可用递归来解 对于 amount 来说,如果我们选择了 coins 任何一枚硬币,则问题规模(amount)是不是缩小了,再对缩小 amount 也选择 coins 任何一枚硬币...,直到再也不能选择(amount <= 0, amount = 0 代表有符合条件解,小于0代没有符合条件解),从描述我们可以看出问题可以分解成子问题,子问题与原问题具有相同解决问题思路,同时也有临界条件...[i] 表示选择了此硬币, 1 表示选择了coins[i] 这一枚硬币 从以上递推公式我们可以获取 DP 解题思路,我们定义 DP(i) 为凑够零钱 i 需要最小值,状态转移方程如下 DP[...return -1; } return dp[amount]; } 画外音:以上只是求出了凑成零钱最小数量,但如果想求由哪些面值硬币构成,该如何修改呢?

    1.8K20

    一文学会动态规划解题技巧

    如图示:从 2 走到最底下最短路径为 2+3+5+1 = 11,即为我们所求 首先我们需要用一个二维数组来表示这个三个角形节点,二维数组显然可以做到, 第一行 2 a[0][0] 表示,第二行元素...一、判断是否可用递归来解 对于 amount 来说,如果我们选择了 coins 任何一枚硬币,则问题规模(amount)是不是缩小了,再对缩小 amount 也选择 coins 任何一枚硬币...,直到再也不能选择(amount <= 0, amount = 0 代表有符合条件解,小于0代没有符合条件解),从描述我们可以看出问题可以分解成子问题,子问题与原问题具有相同解决问题思路,同时也有临界条件...[i] 表示选择了此硬币, 1 表示选择了coins[i] 这一枚硬币 从以上递推公式我们可以获取 DP 解题思路,我们定义 DP(i) 为凑够零钱 i 需要最小值,状态转移方程如下 DP[...return -1; } return dp[amount]; } 画外音:以上只是求出了凑成零钱最小数量,但如果想求由哪些面值硬币构成,该如何修改呢?

    59650

    一文学会动态规划解题技巧

    如图示:从 2 走到最底下最短路径为 2+3+5+1 = 11,即为我们所求 首先我们需要用一个二维数组来表示这个三个角形节点,二维数组显然可以做到, 第一行 2 a[0][0] 表示,第二行元素...一、判断是否可用递归来解 对于 amount 来说,如果我们选择了 coins 任何一枚硬币,则问题规模(amount)是不是缩小了,再对缩小 amount 也选择 coins 任何一枚硬币...,直到再也不能选择(amount <= 0, amount = 0 代表有符合条件解,小于0代没有符合条件解),从描述我们可以看出问题可以分解成子问题,子问题与原问题具有相同解决问题思路,同时也有临界条件...[i] 表示选择了此硬币, 1 表示选择了coins[i] 这一枚硬币 从以上递推公式我们可以获取 DP 解题思路,我们定义 DP(i) 为凑够零钱 i 需要最小值,状态转移方程如下 DP[...return -1; } return dp[amount]; } 画外音:以上只是求出了凑成零钱最小数量,但如果想求由哪些面值硬币构成,该如何修改呢?

    62140

    一文学会动态规划解题技巧

    如图示:从 2 走到最底下最短路径为 2+3+5+1 = 11,即为我们所求 首先我们需要用一个二维数组来表示这个三个角形节点,二维数组显然可以做到, 第一行 2 a[0][0] 表示,第二行元素...一、判断是否可用递归来解 对于 amount 来说,如果我们选择了 coins 任何一枚硬币,则问题规模(amount)是不是缩小了,再对缩小 amount 也选择 coins 任何一枚硬币...,直到再也不能选择(amount <= 0, amount = 0 代表有符合条件解,小于0代没有符合条件解),从描述我们可以看出问题可以分解成子问题,子问题与原问题具有相同解决问题思路,同时也有临界条件...[i] 表示选择了此硬币, 1 表示选择了coins[i] 这一枚硬币 从以上递推公式我们可以获取 DP 解题思路,我们定义 DP(i) 为凑够零钱 i 需要最小值,状态转移方程如下 DP[...return -1; } return dp[amount]; } 画外音:以上只是求出了凑成零钱最小数量,但如果想求由哪些面值硬币构成,该如何修改呢?

    62220

    一文说清动态规划

    如图示:从 2 走到最底下最短路径为 2+3+5+1 = 11,即为我们所求 首先我们需要用一个二维数组来表示这个三个角形节点,二维数组显然可以做到, 第一行 2 a[0][0] 表示,第二行元素...一、判断是否可用递归来解 对于 amount 来说,如果我们选择了 coins 任何一枚硬币,则问题规模(amount)是不是缩小了,再对缩小 amount 也选择 coins 任何一枚硬币...coins[i] 这一枚硬币 3、将第二步递推公式代码表示出来补充到步骤 1 定义函数 得出了递推公式代码实现就简单了,来简单看一下 publicclass Solution {...[i] 表示选择了此硬币, 1 表示选择了coins[i] 这一枚硬币 从以上递推公式我们可以获取 DP 解题思路,我们定义 DP(i) 为凑够零钱 i 需要最小值,状态转移方程如下 DP[...return -1; } return dp[amount]; } 画外音:以上只是求出了凑成零钱最小数量,但如果想求由哪些面值硬币构成,该如何修改呢?

    76710

    JS算法之动态规划

    按照「从下往上」顺序,「从解决最小问题开始」,并把已经解决问题解存储下来(大部分都是存储在一维数组或者二维数组),然后把小问题解组合起来逐步解决大问题。...先求出f(0)和f(1)值, 然后用f(0)和f(1)求出f(2) f(1)和f(2)求出f(3) 依次类推,直至求出f(n-1) function rob(nums){ if(nums.length...值已经计算出来并保存到dp[j]位置 此时f(i,j)值还没有计算出来,因此保存在dp[j+1]还是f(i-1,j)值 ---- 矩阵路径问题 这类问题通常输入是一个「二维格子」,一个机器人按照一定规则从格子某个位置走到另一个位置...创建一个只有两行二维数组dp,将f(i,j)保存在dp[i&1][j],那么将空间复杂度到O(n)。...target(target为sum一半) 为了避免不必要重复计算,二维数组dp保存f(i,j)计算结果。

    6.1K11

    面试+算法之动态规划(Java):斐波那契、背包问题、走棋盘、分苹果、连续子数组最大和、秤砝码、最长公共子串、切割钢条、最长不下降子序列、最优二分搜索树、矩阵链

    动态规划应用于子问题重叠情况,即不同问题具有公共子子问题,此时如果分治法就会出现重复计算求解。...需要记录子问题多种状态:当问题需要记录多个状态,并且这些状态之间有复杂依赖关系时,使用二维数组可以清晰地表示这些依赖关系 多阶段决策:有些问题需要记录不同阶段决策状态,二维数组可以帮助记录每个阶段状态...dp[s.length()]; } 零钱兑换 给定不重复正整数数组coins表示不同面额硬币,给定一个整数cost,各种硬币数量无上限。...求使得取出硬币总价值等于cost最少硬币数量。...自顶向下法是从问题最终状态开始,逐步递归地解决子问题,并将子问题结果存储(记忆化)以避免重复计算。这种方法通常使用递归和一个缓存(如数组或哈希)来存储已经计算过结果。 自底向上法:迭代。

    15610

    LeetCode-322-零钱兑换

    ,cn-1]:可选n枚硬币面额值 这个问题有一个最优子结构性质,这是解决动态规划问题关键。最优解可以从其子问题最优解构造出来。如何将问题分解成子问题?...下列递推关系成立: 在上面的递归树,可以发现有许多子问题被多次计算。例如,F(1)被计算了13次。...为了避免重复计算,我们将每个子问题答案存在一个数组中进行记忆化,如果下次还要计算这个问题值直接从数组中去除返回即可,这样能保证每个子问题最多只被计算一次。...方法3、动态规划-自下而上: 采用自下而上方式进行思考,仍定义F(i)为组成金额i所需最少硬币数量,假设在计算F(i)之前,我们已经计算出F(0)-F(i-1)答案,则F(i)对应转移方程为...F(11) 3 //F(11)=min(F(11-1),F(11-2),F(11-5))+1=3 我们可以看到问题答案是通过子问题最优解得到 例子2:假设 coins = [1,2,3],amount

    50810

    LeetCode-322-零钱兑换

    ,cn-1]:可选n枚硬币面额值 这个问题有一个最优子结构性质,这是解决动态规划问题关键。最优解可以从其子问题最优解构造出来。如何将问题分解成子问题?...下列递推关系成立: 在上面的递归树,可以发现有许多子问题被多次计算。例如,F(1)被计算了13次。...为了避免重复计算,我们将每个子问题答案存在一个数组中进行记忆化,如果下次还要计算这个问题值直接从数组中去除返回即可,这样能保证每个子问题最多只被计算一次。...例子1:假设 coins = [1,2,5],amount=11 则,当i==0时无法硬币组成,为0。...F(11) 3 //F(11)=min(F(11-1),F(11-2),F(11-5))+1=3 我们可以看到问题答案是通过子问题最优解得到 例子2:假设 coins = [1,2,3],amount

    54520

    【愚公系列】2023年12月 五大常用算法(三)-动态规划算法

    因此,在动态规划,通常会结合其他优化方法,如记忆化搜索、剪枝等,使得算法能够高效求解。...将已解决问题结果保存在一个数组或者哈希,当需要计算相同问题时,就可以直接返回之前计算结果,而不必再次递归计算。...在以下代码,我们初始化一个数组 dp 来存储子问题解,它起到了记忆化搜索数组 mem 相同记录作用。...分治算法递归地将原问题划分为多个相互独立问题,直至最小子问题,并在回溯合并子问题解,最终得到原问题解。...动态规划也对问题进行递归分解,但与分治算法主要区别是,动态规划问题是相互依赖,在分解过程中会出现许多重叠子问题。 回溯算法在尝试和回退穷举所有可能解,并通过剪枝避免不必要搜索分支。

    24443

    多重部分和问题dp

    题目:POJ1742 大意:有n种不同大小硬币,面值是ai每种有mi个,题目问,这些硬币能够在价格1-m之间,付款多少种金额?...这个问题就是dp多重部分和问题,在定义递推关系时候,不同递推关系会影响到复杂度。...或 起来 然而这个算法复杂度是O(KΣimi),于是在题目要求下,就tle了 下面是MLE思路 如果我们不仅求出是否能加和得到目标数值,还顺便把得到这个数时候,ai还剩下多少个也算出来,那么就可以降低时间复杂度...把dp数组改为: dp[i+1][j]=前i种数,加和得到j时,第i种数最多还能剩下多少个。...上面这个思路是正确,但是我们需要开一个很大二维数组,对于这一题来说,就MLE了 重复利用数组,降低空间复杂度 我们会发现,当我们进行循环时,是按照i,一位一位进行增加,在计算第i位时候,i-1位之前数据其实已经不需要了

    11420

    经典动态规划:完全背包问题

    dp[状态1][状态2][...] = 计算(选择1,选择2...) 第二步要明确dp数组定义。 首先看看刚才找到「状态」,有两个,也就是说我们需要一个二维dp数组。...换句话说,翻译回我们题目的意思就是: 若只使用coins前i个硬币面值,若想凑出金额j,有dp[i][j]种凑法。...因为如果不使用任何硬币面值,就无法凑出任何金额;如果凑出目标金额为 0,那么“无为而治”就是唯一一种凑法。 我们最终想得到答案就是dp[N][amount],其中N为coins数组大小。...我 Java 写代码,把上面的思路完全翻译了一遍,并且处理了一些边界问题: int change(int amount, int[] coins) { int n = coins.length...[j] = dp[j] + dp[j-coins[i]]; return dp[amount]; } 这个解法和之前思路完全相同,将二维dp数组压缩为一维,时间复杂度 O(N*amount

    51920

    【算法学习】动态规划

    分治法来解,有些共同部分被重复计算了很多次。如果能够保存已解决问题答案,在需要时再查找,这样就可以避免重复计算、节省时间,也就是解决冗余。...实际应用尝试解决一个问题时,其实就是在思考如何将这个问题表达成状态(哪些变量存储哪些数据),以及如何在状态中转移(怎样根据一些变量计算出另一些变量)。 什么是状态?...这种技巧,通俗说叫“花费空间来节省时间”:动态规划就是通过这样方式“记忆”过去,节省每次重新计算时间。 我们可以一个来记录所有已解问题答案。...最优决策是一个二维,其中行表示决策阶段,列表示问题状态,表格需要填写数据一般对应此问题在某个阶段某个状态下最优值(如最短路径,最长公共子序列,最大价值等),填表过程就是根据递推关系依次填写...],计算这些i,能产生最大L[i]i,之后就可以求出L[j]。

    70530

    动态规划详解(修订版)

    3、dp 数组迭代解法 有了上一步「备忘录」启发,我们可以把这个「备忘录」独立出来成为一张,就叫做 DP table 吧,在这张上完成「自底向上」推算岂不美哉!...优化方法无非是备忘录或者 DP table,再无奥妙可言。 这个例子最后,讲一个细节优化。...比如你想求amount = 11时最少硬币数(原问题),如果你知道凑出amount = 10最少硬币数(子问题),你只需要把子问题答案加一(再选一枚面值为 1 硬币)就是原问题答案,因为硬币数量是没有限制...int): # 定义:要凑出金额 n,至少要 dp(n) 个硬币 def dp(n): # 做选择,需要硬币最少那个结果就是答案 for coin in...-1 : dp[amount]; } PS:为啥dp数组初始化为amount + 1呢,因为凑成amount金额硬币数最多只可能等于amount(全 1 元面值硬币),所以初始化为amount

    58450

    【思想】动态规划(DP)

    1.2、定义 【重点】如果问题是由交叠问题构成,那么就可以动态规划技术来解决它。 一般来说,子问题出现在对给定问题求解递推关系,这个递推关系包含相同类型更小子问题解。...DP建议对于交叠问题一次又一次求解,不如对每个较小问题只求解一次并把结果记录在,这样就可以从得出原始问题解。...(解决重复计算问题) 或建立DP自下而上检查子问题循环/拓扑顺序(状态转移方程) 解原问题:=子问题或通过组合子问题解 =>额外时间 来源:麻省理工针对动态规划推导步骤,动态规划第一篇,动态规划第二篇...2.2、精简下步骤 1、定义子问题-问题拆解 2、构建递推公式(递归+记忆化==>递推) 3、自底向上处理(状态转移方程) 4、DP ≈ 递归+记忆化+猜测 三、学习路线 币值最大化 硬币找零问题(...贪心算法) 硬币收集 暴力递归(贪心失效) 避免递归重复计算(递推=递归+记忆化) 背包问题 完全背包 子数组问题 子序列问题 买卖股票 最长递增子序列问题 最大子数组问题 最优子结构与状态依赖 本文讲解了动态规划思想推演以及学习实践路径

    1.3K121

    一个模板搞定各种背包问题

    现在问题关键就在于把实际问题抽象化为背包问题哪一类,然后套用模板即可。 在以下问题中,模板二维数组均可优化为一维数组以降低空间复杂度。...不用加重记忆负担去考虑什么时候该顺序遍历,什么时候该逆序遍历,以及行列遍历顺序能不能颠倒。当你了解了这个模板含义,知道动态规划是如何在二维数组上实现,这些问题都可以迎刃而解。...完全背包 从n种物品任选,每种物品可以无限取用 方案数 518. 零钱兑换 II 给定不同面额硬币和一个总金额。写出函数来计算可以凑成总金额硬币组合数。假设每一种面额硬币有无限个。...组合总和 Ⅳ 给你一个由不同整数组成数组nums,和一个目标整数target。请你从nums找出并返回总和为target元素组合个数。 题目数据保证答案符合 32 位整数范围。...添加数位没有数字 0 。 由于答案可能会很大,请你以字符串形式返回。 如果按照上述要求无法得到任何整数,请你返回 “0” 。

    46610

    【地铁上面试题】--基础部分--数据结构与算法--动态规划和贪心算法

    在代码,我们使用了一个二维数组dp来记录子问题结果,通过填表方式逐步求解dp[i][j]值。最终返回dp[m][n]即可得到最长公共子序列长度。...假设割断点在j处(1 <= j <= i),则割断后两段钢条分别为长度为j钢条和长度为i-j钢条。割断后总价值为价值对应长度价值之和,即price[j] + dp[i-j]。...在某些情况下,状态转移方程计算量较大,可能导致更高时间复杂度。 空间复杂度分析: 自底向上动态规划通常需要使用一个二维数组或更高维状态来存储中间结果。...解题思路: 统计字符集中每个字符出现频率,并构建字符频率。 创建一个优先队列(通常使用最小堆),将字符频率字符按照频率从小到大依次加入队列。...Tip:动态规划和贪心算法并不是相互排斥,有些问题既可以动态规划求解,也可以贪心算法求解。在实际应用,根据问题特性和要求,选择合适算法进行求解。

    36920

    javascript分类刷leetcode3.动态规划(图文视频讲解)

    动态规划和递归区别:递归和回溯可能存在非常多重复计算,动态规划可以递归加记忆方式减少不必要重复计算动态规划解题方法递归+记忆化(自顶向下)动态规划(自底向上)图片解动态规划题目的步骤根据重叠子问题定义状态寻找最优子结构推导状态转移方程确定...[row - 1][col - 1]};0-1背包问题0-1背包问题指的是有n个物品和容量为j背包,weight数组记录了n个物品重量,位置i物品重量是weighti,value数组记录了n个物品价值...j背包,当dp[i][j]为true时表示恰好可以装满 //最后求dp[n][sum] 表示前n个物品能否把容量为sum背包恰好装满 //dp数组长度是n+1,而且是二维数组,第一维表示物品索引...7,在用2个1,4 * 7 + 2 * 1 = 30,但是我们5个6,5 * 6 = 30 就能用最少硬币兑换完成方法1.动态规划思路:dp[i]表示兑换面额i所需要最少硬币,因为硬币无限,所以可以自底向上计算...dp[i],对于dp[0~i]每个状态,循环coins数组,寻找可以兑换组合,i面额减去当前硬币价值,dp[i-coin]在加上一个硬币数就是dp[i],最后取最小值就是答案,状态转移方程就是dp

    52920
    领券