首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python opencv图像处理基础总结(四) 模板匹配 图像二值化

[elx1liphmo.png] 匹配结果 [848opckxpo.png] 二、图像二值化 在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓...该函数的阈值操作属于像素级的操作,在灰度图中,每个像素都对应一个灰度值(0~255,0黑、255白),我们将阈值函数 threshold() 应用于图像,图像的灰度值与阈值进行比较,从而实现二值化处理,...cv2.THRESH_BINARY_INV 反向二值阈值化 —— 像素值大于阈值的设为最小值,小于阈值的设为最大值。...[uq9ucfnadk.png] 这些函数都有两个返回值,第一个返回值为使用的阈值,第二个就是阈值化后的图像。...按照最大类间方差法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大。 它是按图像的灰度特性,将图像分成背景和前景两部分。

4.8K32
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python opencv图像处理基础总结(四) 模板匹配 图像二值化

    匹配算法 3. opencv相关API 二、图像二值化 1. 全局阈值函数 2. 局部阈值函数 一、模板匹配 1....匹配结果如下: 二、图像二值化 在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓。...该函数的阈值操作属于像素级的操作,在灰度图中,每个像素都对应一个灰度值(0~255,0黑、255白),我们将阈值函数 threshold() 应用于图像,图像的灰度值与阈值进行比较,从而实现二值化处理,...cv2.THRESH_TOZERO_INV 像素值大于阈值的保持原来的像素值,小于阈值的置为0。 这些函数都有两个返回值,第一个返回值为使用的阈值,第二个就是阈值化后的图像。...按照最大类间方差法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大。 它是按图像的灰度特性,将图像分成背景和前景两部分。

    1.4K40

    转--Golang图像处理工具库,图像相似度计算,图像二值化

    imgo golang图像处理工具库,图像相似度计算,图像二值化(golang image process lib) 目前只支持jpg,png 安装 go get github.com/Comdex/imgo...[height][width][4],height为图像高度,width为图像宽度 //img[height][width][4]为第height行第width列上像素点的RGBA数值数组,值范围为...0-255 //如img[150][20][0]是150行20列处像素的红色值,img[150][20][1]是150行20列处像素的绿 //色值,img[150][20][2]是150...行20列处像素的蓝色值,img[150][20][3]是150行20列处像素 //的alpha数值,一般用作不透明度参数,如果一个像素的alpha通道数值为0%,那它就是完全透明的....img:=imgo.MustRead("example/test.jpg") //对原图像矩阵进行日落效果处理 img2:=imgo.SunsetEffect(img) //保存为jpeg

    3.9K140

    模式识别---图像二值化

    要对图像进行识别,首先要做的将图像从多通道颜色分量变为单通道,也就是gray色调中来,常用的方法有目下三种, 第一种  求rgb颜色风量的平均值:            G(x,y) =(r(x,y)+...第二种:        视觉心理学公式:          G(x,y)= r(x,y)*299 + g(x,y)*587 + b(x,y)*114/1000 还有一种:        G(x,y) =...采用第二种效果进行将彩色图片灰度化:(关键代码) 1 for(int i=0;i<cinfo.image_width;i++) { 2 color_r = (int...一般进过从多通道颜色分量处理之后,就需要对图像进行腐蚀,然后得到二值化图像。...需要设定一个阈值,进行单纯的判断,这是最简单的方式 1 for(int i=0;i<cinfo.image_width;i++) { 2 color_r = (int

    1.4K120

    图像二值化方法汇总介绍

    ImageJ中图像二值化方法介绍 概述 二值图像分析在对象识别与模式匹配中有重要作用,同时也在机器人视觉中也是图像处理的关键步骤,选择不同图像二值化方法得到的结果也不尽相同。...本文介绍超过十种以上的基于全局阈值的图像二值化方法,其中最大值为255表示白色, 0 表示黑色,H表示图像直方图。imageJ重要开源分支Fiji中已经实现了全局自动阈值16种方法。...ImageJ演示 首先来看一下原图,是一张人体细胞组织的图像,显示如下: ? 各种二值化方法生成的对应的二值图像图像显示如下: ?...,从0~255之间,然后求它们的最小内方差对应直方图灰度索引值作为阈值实现图像二值化,OpenCV中已经实现,而且是OpenCV2.x全局阈值二值化方法。...学堂】2017将继续分享有用的图像处理与机器学习知识。

    4.5K50

    【说站】python图像二值化处理

    python图像二值化处理 一、图像二值化 图像二值化是指将图像上像素点的灰度值设定为0或255,即整个图像呈现明显的黑白效果的过程。...二、python图像二值化处理 1.opencv简单阈值cv2.threshold 2.opencv自适应阈值cv2.adaptiveThreshold 有两种方法可用于计算自适应阈值:mean_c和guassian_c...3.Otsu's二值化 三、示例: import cv2 import numpy as np from matplotlib import pyplot as plt   img = cv2.imread...Adaptive Thresholding",   'Original Noisy Image', 'Histogram', "Otsu's Thresholding" ] # 这里使用了 pyplot 中画直方图的方法..., plt.hist, 要注意的是它的参数是一维数组 # 所以这里使用了( numpy ) ravel 方法,将多维数组转换成一维,也可以使用 flatten 方法 # ndarray.flat 1-D

    39330

    Python提取彩色图像的二值化边缘

    所谓二值化是指只包含白和黑这两种颜色,下面的代码中使用白色表示内部或背景,使用黑色表示边缘。...图像边缘提取的基本思路是:如果一个像素的颜色值与周围像素足够接近(属于低频部分)则认为是图像背景或者内部,如果一个像素的颜色值与周围像素相差很大(属于高频部分)则认为是图像边缘。...在具体实现时,边缘提取有很多种方法,分别采用不同的卷积和,针对不同类型的边缘。下面代码的思路是:如果一个像素的颜色值与其右侧和下侧像素都足够接近则认为不是边缘,否则认为是边缘。..., (0,0,0)) for w in range(width-1): for h in range(height-1): #分别获取原始图像当前位置、下侧、右侧像素的颜色...使用上面的代码提取出来的边缘: ?

    2.4K40

    实例说明图像的灰度化和二值化的区别

    首先我们还是得了解一下定义(搬运工): 灰度化:在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值...二值化:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果 下面是matlab实验,请根据实验过程以及结果来进一步理解定义: 首先读入原图像并显示...然后将图像进行灰度化并显示: >> J = rgb2gray(I);   %将rgb彩色图像转化为灰度图像 >> imshow(J); ?...最后将灰度图像进行二值化并显示: >> level = graythresh(J);   %自动获取阈值(0-1) >> imgbw = im2bw(J,level);   %二值化的方法 >>...结果很明显了,自己思考并理解灰度化和二值化的定义吧

    5.1K10

    OpenCV基础 | 11.图像二值化

    学习视频可参见python+opencv3.3视频教学 基础入门[1] outline 图像二值化 二值图像 图像二值化方法 OpenCV相关API使用 图像二值化 1.二值图像 二值图像就是将灰度图转化成黑白图...,没有灰,在一个值之前为黑,之后为白 2.二值化方法 全局阈值 对整幅图像都是用一个统一的阈值来进行二值化 局部阈值 像素的邻域块的像素值分布来确定该像素位置上的二值化阈值 3.OpenCV中图像二值化方法...参见【图像处理】——图像的二值化操作及阈值化操作[3] 结果如下: ? 自动与手动 手动指定阈值 测试结果 ?...对图像每一个像素格进行如此操作就完成了对整个图像的二值化处理。...p=1 [2] 基于Otsu的全局阈值处理的实现: https://blog.csdn.net/m0_38061927/article/details/77362877 [3] 【图像处理】——图像的二值化操作及阈值化操作

    75450

    图像二值化-局部阈值方法汇总

    概述: 在图像处理中二值图像处理与分析是图像处理的重要分支,图像二值分割尤为重要,有时候基于全局阈值自动分割的方法并不能准确的将背景和对象二值化,这个时候就需要使用局部的二值化方法。...常见的图像二值化局部自动阈值的方法有九种,在ImageJ的分支Fiji中已经全部实现,OpenCV中自适应阈值方法也实现了局部阈值的均值法与高斯均值法算法。...对于二值图像常见的表示还可以1 - 表示对象,0-表示背景。 运行与各种方法介绍: 首先看一下ImageJ种九种二值化方法的运行演示: 原图 ? 对应基于各种局部二值化方法运行结果: ?...这样就实现了每个像素点的二值化赋值,从而得到最终的二值图像。 Contrast 基于对比度二值化方法,根据局部像素块最大值与最小值决定中心像素是否设为对象像素或者背景像素。...OpenCV中也有基于Otsu的全局阈值实现。看这里即可《二值化算法OTSU源码解析》 Phansalkar 该方法对低对比度的图像实现二值化比较管用,计算阈值的公式如下: ?

    8.9K101

    Task05 图像分割二值化

    它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。...从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大。...同时像素被分为C1和C2类的概率分别为p1、p2。因此就有: ? 根据原文,式(4)还可以进一步变形: ? 分割: 这个分割就是二值化,OpenCV给了以下几种方式,很简单,可以参考: ?...5.5 基于OpenCV的实现 5.5.1 图像二值化 import cv2 import matplotlib.pyplot as plt img = cv2.imread('cat.jpg',0...这样就完成了二值图像的距离变换 # cv2.distanceTransform(src, distanceType, maskSize) # 第二个参数 0,1,2 分别 示 CV_DIST_L1, CV_DIST_L2

    1.3K20

    【从零学习OpenCV 4】图像二值化

    二值图像色彩种类少,可以进行高度的压缩,节省存储空间,将非二值图像经过计算变成二值图像的过程称为图像的二值化。...dst:二值化后的图像,与输入图像具有相同的尺寸、数据类型和通道数。 thresh:二值化的阈值。...前面5种标志在调用函数时都需要人为的设置阈值,如果对图像不了解设置的阈值不合理,会对处理后的效果造成严重的影响,这两个标志分别表示利用大津法(OTSU)和三角形法(TRIANGLE)结合图像灰度值分布特性获取二值化的阈值...dst:二值化后的图像,与输入图像具有相同的尺寸、数据类型。 maxValue:二值化的最大值。...为了直观的体会到图像二值化的效果,在代码清单3-19中给出了分别对彩色图像和灰度图像进行二值化的示例程序,程序运行结果在图3-15、图3-16中给出。

    98910

    一文搞懂图像二值化算法

    图像分割结果 最简单的图像分割方法是二值化(Binarization)。...图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。...彩色图、灰度图、二值图对比 由于二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。...进行二值化有多种方式,其中最常用的就是采用阈值法(Thresholding)进行二值化。 在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。...局部方法分割二维码 实际运用中,我们要根据需求选择不同的二值化方法,没有哪个方法是绝对完美的。

    3.3K60
    领券