在C#中,定时器频率偏离的原因可能有以下几点:
为了提高定时器的精度和准确性,可以采用以下方法:
推荐的腾讯云相关产品和产品介绍链接地址:
以上是我的回答,如果您有任何问题,请随时问我。
看到知乎有人提问《C# 如果要实现一个任务每天 0 点执行,用什么方法等待更高效?》,回想起之前写过的一个方法,现在翻出来大家讨论讨论。
前几天写了一篇java的定时器方案,应小伙伴的要求,今天这里一下c#实现定时器的方案。
介绍STM32F407基本定时器的配置方法,分别介绍轮询方式、中断方式使用定时器完成定时。
4.2、通过第三方组件 (Topshelf)创建C# Windows服务应用程序。
本实验是在我们基本上掌握DSP中断机制的基础上,进一步学习如何在DSP内部实现定时器的正确操作以及定时器中断服务程序的编写。
在C#WINFORM或者是ASP.NET的WEB应用程序中,根据各种定时任务的需求,比如:每天的数据统计,每小时刷新系统缓存等等,这个时候我们得应用到定时器这个东东。 .NET Framework有自带的timer,但这个类只能完成一些简单的定时操作,比如间隔多久执行什么操作。遇到一些复杂的定时任务,如从当前时间开始,多 少时间后间隔重复执行,timer类处理起来就相对困难了。经过多番查找搜索,终于找到一下比较好用的任务定时器–FluentScheduler,你可 以通过Nuget来引用,用程序包管理器执行
时钟周期:时钟周期T是时序中最小的时间单位,具体计算的方法就是 1/时钟源频率,89C51单片机开发板上常用的晶振是11.0592M,对于这个单片机系统来说,时钟周期=1/11059200 秒。
前段时间,有小伙伴问小代,说给讲讲定时器初值的计算方式。今天我们就来细说定时器/计数器的初值的计算。
https://www.cnblogs.com/shanyou/p/17858385.html
上一次我们讲到了多点温度采集系统的设计,为此,特意开发了一个上位机用于显示温度,这一节就是来说一下上位机的开发。
这种种控制方式的特点是:控制简单、实现容易、价格较低,这种开环控制方式,负载位置对控制电路没有反馈。
原文由Rector首发于 码友网 之 《C#/.NET/.NET Core应用程序编程中实现定时任务调度的方法或者组件有哪些,Timer,FluentScheduler,TaskScheduler,Gofer.NET,Coravel,Quartz.NET还是Hangfire》
如下图所示,假设该装置使用步进电机实现物体X的移动,系统要求物体X从A点出发,到B点停止,移动的时间越短越好且系统稳定。
定时器说白了就是计数器,应用在我们生活的方方面面,比如有闹钟、计时器等。在STM32参考手册中,定时器分为3类,即高级控制定时器(TIM1和TIM8)、通用定时器(TIMx)以及基本定时器(TIM6和TIM7),要学会定时器要懂得分频设置、计数器设置。
摘要:本文根据对目标金属物的非接触式探测定位和移动的具体要求,以STC89C52RC单片机为控制核心,结合驱动模块、三个电感模块(LDC1000电感数字传感器)、测速模块和显示模块,设计并实现了一种自动循迹小车。该小车能在规定的具有0.6-0.9mm细铁丝标识的平面跑道上自动循迹前进,且在行进过程中能够检测到硬币并报警,同时小车的运行时间、距离等信息可在显示屏上实时显示。经过多次测试表明,该循迹小车达到了预期的效果,自动循迹稳定,硬币识别准确,实时显示距离及时间效果好,抗干扰能力强。
在我们的DIY电子时钟里,需要用到单片机定时器来做秒的显示,说是显示,其实就是实现数码管上“:”点的闪烁。这里初步定义为每秒亮1次,亮0.5秒,灭0.5秒。实现显示秒的功能。这里也可以用DS1302的秒数据来做,但是实现起来麻烦,达到一样的效果,我们追求的是程序越简单越好,所以在此我们用单片机定时器来实现。
上篇文章中介绍了定时器是由专门的部件来处理,本篇来整理定时器的核心部件以及相关的概念。
https://www.cnblogs.com/yangfengwu/p/12382103.html 编写C#串口调试助手
链接:cnblogs.com/JerryMouseLi/p/15543495.html
STC90C51RC/RD+系列单片机内部设置的两个16位定时器/计数器T0和T1都具有计数方式和定时方式两种工作方式。对每个定时器/计数器(T0和T1),在特殊功能寄存器TMOD中都有一控制-C/T来选择T0或者T1为定时器还是计数器。定时器/计数器的核心部件是一个加法计数器,其本质是对脉冲进行计数。只是计数脉冲来源不同:如果计数脉冲来自系统时钟,则为定时方式,此时定时器/计数器每12个时钟或者每6个时钟得到一个计数脉冲,计数值加1;如果计数脉冲来自单片机外部引脚(T0为P3.3,T1为P3.3),则为计数方式,每来一个脉冲加1。
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第33章 STM32H7的定时器应用之TIM1-TIM17
文末下载完整资料 1.1八路扫描式抢答器的概述 本文介绍的八路数显抢答器具有电路简单、成本较低、操作方便、灵敏可靠等优点,经使用效果良好, 具有较高的推广价值。无线遥控抢答器,它由8个发射器和1个接收器组成,可用于8组或8组以下的智力竞赛中。比赛前,将参赛组从0至7编号,每组发给对应的一个发射器。将接收器放于各组中央或前方。主持人按一下启动键后,抢答开始。此后,哪一组最先按下发射器上的抢答键,接收器就立即显示该组的组号并锁定,同时发出3次清脆的“叮咚”声。以后,按下任何一路抢答键均不起反映。只有主持人再次按动启动键后,才能进行下一次抢答该电路由直流稳压电源、抢答器、超时报警与电子计分四部分组成。 1.2本设计任务及要求 任务:设计一个供8名选手参加八路扫描式抢答器。 1.3系统主要功能 每名选手有一个抢答按钮,按钮的编号与选手的编号相对应,抢答器具有第一个抢答信号的鉴别和数据锁存、显示的功能。抢答开始后,若有选手按抢答按钮,刚该选手指示灯亮,并在数码管上显示相应编号,扬声器发出音响提示。同时,电路应具备自锁功能,禁止其他选手再抢答,优先抢答选手的编号一直保持到主持人将系统清0 为止。抢答器具有计分、显示功能。预置分数可由主持人设定,并显示在每名选手的计分牌上,选手答对加10分,答错扣10分。抢答器具有定时抢答的功能。一次抢答的时间由主持人设定,在主持人发出抢答指令后,定时器立即进行减计时,并在显示器上显示,同时扬声器发出短暂声响,声响时间持续0.5s左右。选手在设定的时间内进行抢答,抢答有效,定时器停止工作,显示器显示选手编号和抢答时刻的时间,并保持到主持人将系统清0为止。 第2节 系统硬件设计 2.1芯片的选择 本设计使用到的元器件包括:8051芯片、数码LED显示器、七段LED数码管的译码。 2.2工作原理 基于这个设计的上述要求,根据功能要求,须设计有抢答电路、译码显示电路、主持人控制电路、定时电路、报警电路,各个电路都有其自己的功能。通过复位按键FW,电路进入就绪状态,等待抢答。首先由主持人根据题目的难易程度,可以用“JIA SHI”和“JIAN SHA”两个按键,设定时间在(0S-99S)之间,然后再由主持人发布抢答命令(按下KS按键)同时发光二极管随即变亮,当看到二极管亮,进入倒计时状态和抢答状态。在电路中“S1-S8”为8路抢答器的8个按键,如果有人按下按键,程序就会判断是谁先按下的,然后从P2口输出抢答者号码的七段码值,经GAL16V8驱动,送到码管显示,并封锁键盘,保持刚才按键按下时刻的时间,禁止其他人按键的输入,从而实现了抢答的功能。如果在设定的时间中没有一个人按下按键,一到时间,则产生报警信号已经超时,不可以抢答。当要进行下一次的抢答时,由主持人先按一下复位按键FW,电路复位,进入下一次抢答的就绪状态。 2.3系统的硬件构成及功能 2.3.1 抢答器的电路框图 &emsp如图11、1所示为电路框图。其工作原理为:接通电源后,主持人将开关拨到“清除”状态,抢答器处于禁止状态,编号显示器灭灯,定时器显示设定时间;主持人将开关置,“开始”状态,宣布“开始”抢答器工作。定时器倒计时,扬声器给出声响提示。选手在定时时间内抢答时,抢答器完成:优先判断、编号锁存、编号显示、扬声器提示。当一轮抢答之后,定时器停止、禁止二次抢答、定时器显示剩余时间。如果再次抢答必须由主持人再次操作”清除”和”开始”状态开关。
STC12C5A16S2系列单片机有4个定时器,其中定时器0和定时器1两个16位定时器,与 传统8051的定时器完全兼容,也可以设置为1T模式,当在定时器1做波特率发生器时,定时 器0可以当两个8位定时器用(另外2路PCA/PWM可以再实现2个16位定时器)。
面试官:Hi,上次我们聊到了Redis作为缓存的数据一致性问题,这次我们继续聊一聊Redis作为缓存的问题之内存消耗问题?
SysTick定时器(又名系统滴答定时器)是存在于Cortex-M3的一个定时器,只要是ARM Cotex-M系列内核的MCU都包含这个定时器。使用内核的SysTick定时器来实现延时,可以不占用系统定时器,节约资源。由于SysTick是在CPU核内部实现的,跟MCU外设无关,因此它的代码可以在不同厂家之间移植。
延时函数,作为一种常用函数,在不同的领域有不同的用处。而在嵌入式以及C语言的编写中,我们常常遇到需要自己来编写延时函数的情况,这种情况之下,了解其原理就显得必要。
定时器就是用来进行定时的,定时器内部有一个寄存器,我们让它开始计数后,这个寄存器的值每经过一个机器周期就会自动加 1,因此,我们可以把机器周期理解为定时器的计数周期。就像我们的钟表,每经过一秒,数字自动加 1,而这个定时器就是每过一个机器周期的时间,也就是 12/11059200 秒,数字自动加 1。还有一个特别注意的地方,就是钟表是加到 60 后,秒就自动变成 0 了,这种情况在单片机或计算机里我们称之为溢出。
输出PWM波的原理是,利用TIM定时器和输出比较,TIM定时器会周期性地线性增长,当计数器的值低于设定的比较值时输出高电平,大于等于比较值时输出低电平。由于是线性增长,高电平时长占整个周期信号时长的比例是固定的,这个比例被称为“占空比”,英文“Duty Cycle”。 在嵌入式系统中,特别是使用定时器来生成PWM信号时,经常使用的是定时器的比较寄存器(Capture/Compare Register,CCR)和自动重载寄存器(Auto-Reload Register,ARR)来控制PWM的占空比。 给定:
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便
STM32F1的定时器非常多,由2个基本定时器(TIM6、TIM7)、4个通用定时器(TIM2-TIM5)和2个高级定时器(TIM1、TIM8)组成。基本定时器的功能最为简单,类似于51单片机内定时器。通用定时器是在基本定时器的基础上扩展而来,增加了输入捕获与输出比较等功能。高级定时器又是在通用定时器基础上扩展而来,增加了可编程死区互补输出、重复计数器、带刹车(断路)功能,这些功能主要针对工业电机控制方面。这里主要介绍通用定时器。
本篇详细的记录了如何使用STM32CubeMX配置STM32L431RCT6的通用定时器外设,以中断的方式使LED闪烁。
今天我们来学习定时器,32的定时器有着非常丰富的功能, 输入捕获/输出比较,PWM,中断等等。是我们学习STM32最频繁使用到的外设之一,所以一定要掌握好,这节我们讲解定时器中断,本系列教程将对应外设原理,HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用
通常所说的系统时钟就是指时钟系统,它是由振荡器(信号源)、定时唤醒器、分频器等组成的电路。常用的信号源有晶体振荡器和RC振荡器,如下图所示:
CUBEMX 可视化初始化配置,结合 HAL 库,给我们开发带来了很多便利,但 HAL 库封装的延时函数目前仅支持 ms 级别的延时,日常很多情况下会用到 us 延时,特别是一些传感器的数据读取过程,对时序要求比较严格,us 延时必不可少,基于此项需求,此次给大家介绍 3 种 uS 延时的实现方式,方法同样适用标准库,不足之处,还请大佬指出。
前端爱好者的知识盛宴 欢迎关注IMWeb!本文作者——Jorge Bay是Apache Cassandra项目中Node.js以及C#客户端驱动的核心工程师,同时还是DataStax的DSE。 他乐于解决问题与提供服务端解决方案,Jorge拥有超过15年的专业软件开发经验,他为Apache Cassandra实现的Node.js客户端驱动同样也是DataStax官方驱动的基础 当我们希望去优化某个包含了IO功能的应用性能时,我们需要对于应用耗费的CPU周期以及那些妨碍到应用并行化执行的因素了如指掌。本文则
第一部分 halcon篇(hdevelop 17.12)
3..打开Microsoft Visual C# 2008 Express Edition
-上面的代码已经上传至gitee 地址:https://gitee.com/zxhTom/crontab.git
T C P提供可靠的运输层。它使用的方法之一就是确认从另一端收到的数据。但数据和确认都有可能会丢失。 T C P通过在发送时设置一个定时器来解决这种问题。如果当定时器溢出时还没有收到确认,它就重传该数据。对任何实现而言,关键之处就在于超时和重传的策略,即怎样决定超时间隔和如何确定重传的频率。
看门狗时钟控制寄存器 ( WATCHDOG TIMER CONTROL (WTCON) REGISTER ) 详细参数 :
我答的:单片机的IO口可以配置为开漏输出和推挽输出两种模式,它们的主要区别在于输出方式和驱动能力不同。 开漏输出是指输出器件(通常是晶体管)的集电极被接到一个共用的开漏端上,输出时只能拉低电平,而不能提供高电平,因此需要外部上拉电阻来使输出变为高电平。这种输出方式适用于多个器件共用同一条信号线的情况,如I2C总线。 推挽输出则是指在输出器件中使用两个相反极性的晶体管,既可以拉高电平也可以拉低电平,因此不需要外部上拉电阻,具备较强的驱动能力。这种输出方式适用于需要直接驱动负载的情况,如LED灯、继电器等。 因此,选择开漏输出还是推挽输出应根据具体情况而定。
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=93255 第26章 STM32F429的定时器应用之TIM1-TIM14
Arduino的学习过程中一般使用库函数操作。但是关于定时器的例子常用库却没有。因此,在这里简要通俗的写出定时中断的配置过程。参考资料:http://www.instructables.com/id/Arduino-Timer-Interrupts/。
最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=93255 第26章 STM32F407的定时器应用之TIM1-TIM14
目前开发STM32普遍使用HAL库,但 HAL 库封装的延时函数目前仅支持 ms 级别的延时,日常很多情况下会用到 us 延时,特别是一些传感器的数据读取过程,对时序要求比较严格,us 延时必不可少,因此我们今天来介绍STM32如何使用定时器实现微秒(us)级延时。
领取专属 10元无门槛券
手把手带您无忧上云