首页
学习
活动
专区
圈层
工具
发布

使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?

将数据流到 BigQuery 通过分区来回收存储空间 我们将所有数据流到 Kafka(为了减少负载,我们使用了数据过滤),然后再将数据流到 BigQuery,这帮我们解决了查询性能问题,让我们可以在几秒钟内分析大量数据...不过,在我们的案例中,我们在迁移过程中不断地备份和删除旧分区,确保有足够的空间来存储新数据。 ?...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...其中一个想法是验证不同类型的数据是如何在表中分布的。后来发现,几乎 90% 的数据是没有必要存在的,所以我们决定对数据进行整理。...我开发了一个新的 Kafka 消费者,它将过滤掉不需要的记录,并将需要留下的记录插入到另一张表。我们把它叫作整理表,如下所示。 ? 经过整理,类型 A 和 B 被过滤掉了: ? ?

4.3K20

20亿条记录的MySQL大表迁移实战

将数据流到BigQuery 通过分区来回收存储空间 我们将所有数据流到 Kafka(为了减少负载,我们使用了数据过滤),然后再将数据流到 BigQuery,这帮我们解决了查询性能问题,让我们可以在几秒钟内分析大量数据...不过,在我们的案例中,我们在迁移过程中不断地备份和删除旧分区,确保有足够的空间来存储新数据。...其中一个想法是验证不同类型的数据是如何在表中分布的。后来发现,几乎 90% 的数据是没有必要存在的,所以我们决定对数据进行整理。...我开发了一个新的 Kafka 消费者,它将过滤掉不需要的记录,并将需要留下的记录插入到另一张表。我们把它叫作整理表,如下所示。...经过整理,类型 A 和 B 被过滤掉了: 将数据流入新表 整理好数据之后,我们更新了应用程序,让它从新的整理表读取数据。

5.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tapdata Connector 实用指南:数据入仓场景之数据实时同步到 BigQuery

    数据集中存储, 提高分析效率:对于分析师而言,使用多个平台耗时费力,如果将来自多个系统的数据组合到一个集中式数据仓库中,可以有效减少这些成本。...登录 Google Cloud 控制台,创建数据集和表,如已存在可跳过本步骤。 i....基于 BigQuery 特性,Tapdata 做出了哪些针对性调整 在开发过程中,Tapdata 发现 BigQuery 存在如下三点不同于传统数据库的特征: 如使用 JDBC 进行数据的写入与更新,则性能较差...,无法满足实际使用要求; 如使用 StreamAPI 进行数据写入,虽然速度较快,但写入的数据在一段时间内无法更新; 一些数据操作存在 QPS 限制,无法像传统数据库一样随意对数据进行写入。...在数据增量阶段,先将增量事件写入一张临时表,并按照一定的时间间隔,将临时表与全量的数据表通过一个 SQL 进行批量 Merge,完成更新与删除的同步。

    10.1K10

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    合规和渗透测试 PayPal 是一个金融科技组织,在我们的数据集中会处理 PCI 和 PII 数据元素,因此我们与各种监管机构合作,提交了我们将数据移至云端的意图。...根据我们确定的表,我们创建了一个血统图来制订一个包含所使用的表和模式、活跃计划作业、笔记本和仪表板的列表。我们与用户一起验证了工作范围,确认它的确可以代表集群上的负载。...源上的数据操作:由于我们在提取数据时本地系统还在运行,因此我们必须将所有增量更改连续复制到 BigQuery 中的目标。对于小表,我们可以简单地重复复制整个表。...对于每天添加新行且没有更新或删除的较大表,我们可以跟踪增量更改并将其复制到目标。对于在源上更新行,或行被删除和重建的表,复制操作就有点困难了。...源中的 DDL 更改:为支持业务用例而更改源表是不可避免的。由于 DDL 更改已经仅限于批处理,因此我们检测了批处理平台,以发现更改并与数据复制操作同步。

    6.4K20

    Apache Hudi 0.14.0版本重磅发布!

    由于在查找过程中从各种数据文件收集索引数据的成本很高,布隆索引和简单索引对于大型数据集表现出较低的性能。而且,这些索引不保留一对一的记录键来记录文件路径映射;相反,他们在查找时通过优化搜索来推断映射。...文件列表索引通过从维护分区到文件映射的索引检索信息,消除了对递归文件系统调用(如“列表文件”)的需要。事实证明这种方法非常高效,尤其是在处理大量数据集时。...使用 Hudi 0.14.0,用户可以在为其 Hudi 表执行 Glue 目录同步时激活基于元数据表的文件列表。...Google BigQuery 同步增强功能 在 0.14.0 中,BigQuerySyncTool 支持使用清单将表同步到 BigQuery。与传统方式相比,这预计将具有更好的查询性能。...简单桶索引表查询加速(带索引字段) 对于一个简单的桶索引表,如果查询对索引键字段采用等式过滤谓词,Flink引擎会优化规划,只包含来自非常特定数据桶的源数据文件;此类查询预计平均性能将提高近 hoodie.bucket.index.num.buckets

    2.8K30

    基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践

    (图 1,展示了 TRM 第一代数据平台如何处理面向用户的分析,并通过 Postgres 和 BigQuery 路由查询)二、从 BigQuery 迈向新一代开放式数据湖仓尽管 BigQuery 多年来在客户分析场景中表现稳定...(图 2,展示了三款查询引擎在 2.57 TB 区块链分析数据集上,执行查找与过滤操作的性能对比。无论配置如何,StarRocks 的响应时间始终优于其他引擎,表现最为稳定出色。)...3.3.1 点查 / 过滤的实验探索图 2 展示了在该类负载下的测试结果:对 2.57 TB 数据集执行点查与范围查找(range lookup)操作,评估查询子集的响应性能。...在本轮测试中,数据集扩展至 2.85 TB,查询包含 SUM、COUNT、GROUP BY 等聚合操作,并叠加数组与日期范围过滤条件。测试结果如下:StarRocks:在复杂聚合负载下表现出色。...测试时(2024 年初)尚不支持数据湖表的缓存功能,该能力已在 Trino 版本 439 中加入,但尚未进行评估。

    50310

    从1到10 的高级 SQL 技巧,试试知道多少?

    例如,数据user_id集中last_online取决于最新的已知连接时间戳。在这种情况下,您需要update现有用户和insert新用户。...Google BigQuery MERGE 命令是数据操作语言 (DML) 语句之一。它通常用于在一条语句中自动执行三个主要功能。这些函数是 UPDATE、INSERT 和 DELETE。...这意味着 Google BigQuery MERGE 命令可让您通过更新、插入和删除 Google BigQuery 表中的数据来合并 Google BigQuery 数据。...对于每个日期,如何在保留所有行的同时显示每个客户的总收入值?...您的数据集可能包含相同类型的连续重复事件,但理想情况下您希望将每个事件与下一个不同类型的事件链接起来。当您需要获取某些内容(即事件、购买等)的列表以构建渠道数据集时,这可能很有用。

    1.1K10

    Apache Hudi 0.11.0版本重磅发布!

    布隆过滤器索引包含文件级布隆过滤器,以便在进行writer更新插入期间将主键查找和文件裁剪作为布隆索引的一部分。 2....,允许利用数据跳过对于所有数据集,无论它们是否执行布局优化程序(如聚类)。...数据跳过支持标准函数(以及一些常用表达式),允许您将常用标准转换应用于查询过滤器中列的原始数据。...异步索引器 在 0.11.0 中,我们添加了一个新的异步服务,用于索引我们丰富的表服务集。它允许用户在元数据表中创建不同类型的索引(例如,文件、布隆过滤器和列统计信息),而不会阻塞摄取。...Google BigQuery集成 在 0.11.0 中,Hudi 表可以作为外部表从 BigQuery 中查询。

    4.6K40

    谷歌发布 Hive-BigQuery 开源连接器,加强跨平台数据集成能力

    所有的计算操作(如聚合和连接)仍然由 Hive 的执行引擎处理,连接器则管理所有与 BigQuery 数据层的交互,而不管底层数据是存储在 BigQuery 本地存储中,还是通过 BigLake 连接存储在云存储桶中...BigQuery 是谷歌云提供的无服务器数据仓库,支持对海量数据集进行可扩展的查询。为了确保数据的一致性和可靠性,这次发布的开源连接器使用 Hive 的元数据来表示 BigQuery 中存储的表。...图片来源:谷歌数据分析博客 根据谷歌云的说法,Hive-BigQuery 连接器可以在以下场景中为企业提供帮助:确保迁移过程中操作的连续性,将 BigQuery 用于需要数据仓库子集的需求,或者保有一个完整的开源软件技术栈...BigQuery 和 BigLake 表的数据。...BigQuery 表读取到 Spark 的数据帧中,并将数据帧写回 BigQuery。

    1.7K20

    超级重磅!Apache Hudi多模索引对查询优化高达30倍

    多表事务确保原子性并且对故障具有弹性,因此对数据或元数据表的部分写入永远不会暴露给其他读取或写入事务。元数据表是为自我管理而构建的,因此用户不需要在任何表服务上花费操作周期,包括压缩和清理。...此外,这些元数据表索引通过缓存元数据的集中时间线服务器提供服务,进一步减少了执行程序查找的延迟。 3. 多模索引如何提升性能? 元数据表对于提高 Hudi 用户的性能有几个好处。...文件分区存储数据表中每个分区的文件名、大小和活动状态等文件信息。 我们展示了在 Amazon S3 上使用包含不同数量的文件和分区的各种规模的 Hudi 表对文件列表的性能改进。...该索引对记录键的最小值和最大值采用基于范围的修剪,并使用基于布隆过滤器的查找来标记传入记录。对于大型表,这涉及读取所有匹配数据文件的页脚以进行布隆过滤器,这在整个数据集随机更新的情况下可能会很昂贵。...根据我们对包含 100k 个文件的 Hudi 表的分析,与从单个数据文件页脚读取相比,从元数据表中的 bloom_filter 分区读取布隆过滤器的速度要快 3 倍。

    2K20

    拿起Python,防御特朗普的Twitter!

    例如,JPEG、GIF、PNG和BMP都是不同的图像格式,用于说明如何在文件中存储图像。XLS和CSV也是在文件中存储表格数据的两种格式。 在本例中,我们希望存储键值数据结构。...现在我们已经将所有语法数据都作为JSON,有无数种方法可以分析它。我们没有在tweet出现时进行分析,而是决定将每条tweet插入到一个BigQuery表中,然后找出如何分析它。...BigQuery:分析推文中的语言趋势 我们创建了一个包含所有tweet的BigQuery表,然后运行一些SQL查询来查找语言趋势。下面是BigQuery表的模式: ?...表中的token列是一个巨大的JSON字符串。幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。...数据可视化 BigQuery与Tableau、data Studio和Apache Zeppelin等数据可视化工具很棒。将BigQuery表连接到Tableau来创建上面所示的条形图。

    6.9K30

    一顿操作猛如虎,涨跌全看特朗普!

    例如,JPEG、GIF、PNG和BMP都是不同的图像格式,用于说明如何在文件中存储图像。XLS和CSV也是在文件中存储表格数据的两种格式。 在本例中,我们希望存储键值数据结构。...BigQuery:分析推文中的语言趋势 我们创建了一个包含所有tweet的BigQuery表,然后运行一些SQL查询来查找语言趋势。...下面是BigQuery表的模式: 我们使用google-cloud npm包将每条推文插入到表格中,只需要几行JavaScript代码: 表中的token列是一个巨大的JSON字符串。...幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。...将BigQuery表连接到Tableau来创建上面所示的条形图。Tableau允许你根据正在处理的数据类型创建各种不同的图表。

    5.4K40

    【Rust日报】2020-03-30 大表数据复制工具dbcrossbar 0.3.1即将发布新版本

    (已经知道未来在Version 1.0还将会有更重大的信息披露) 你可以使用dbcrossbar将CSV裸数据快速的导入PostgreSQL,或者将PostgreSQL数据库中的表 在BigQuery里做一个镜像表来做分析应用...dbcrossbar提供了各种常用流行的数据(库) 的驱动程序,设计目标是用来可以高效的操作大约1GB到500GB范围大小的数据集的。...dbcrossbar支持常用的纯量数据类型,外加数组,JSON,GeoJSON和UUID等, 并且可以在不同类型的数据库之间转换这些类型,还可以通过--where命令行选项 做条件过滤,它可以overwrite...覆盖写操作数据表,append添加写,甚至可以 (对PostgreSQL和BigQuery)做UPSERT(Update or Insert into a table)操作。...它知道怎么自动的来回将PostgreSQL的表定义转换成BigQuery的表定义。 Rust的异步功能已经在这个开源项目中被证明了Rust是一种超级牛的编程语音。

    1.1K30

    Tapdata Cloud 3.1.3 Release Notes

    1 新增功能 ① 用户可以根据需要调整目标节点建表时字段的类型、长度和精度 ② 全量任务支持配置调度策略进行周期调度执行 ③ 在创建数据源时,支持设置黑名单将不需要的表过滤掉 ④ 新增 Beta 数据源...BigQuery 支持作为目标进行数据写入 ⑤ MySQL 作为源时支持指定增量时间点进行同步 ⑥ 新增本地日志上传下载能力,可以在界面直接上传和下载本地 Agent 日志 2 功能优化 ① Agent...部署引导流程优化:新增体验 Demo,用户无需安装 Agent 即可体验产品能力 ② 任务列表展示优化:新增展示任务的增量时间点,并支持排序 ③ 分类功能体验优化:用户选择分类后,会记住用户的分类选择...④ 可观测日志展示方式优化:支持折叠和展开时自动格式化 ⑤ 源节点增量时间点推进逻辑优化:任务使用的表的增量时间点,应随着所在库的增量时间点进行持续推进 3 问题修复 ① 修复了 MySQL 作为源,...CDC 技术,0入侵实时采集,毫秒级同步延迟,拖拽式的“零”代码配置操作,可视化任务运行监控和告警,能够在跨云、跨地域、多类型数据源的场景下,提供毫秒级的实时数据同步服务和数据融合服务。

    74920

    独家 | 如何在BigQueryML中使用K-均值聚类来更好地理解和描述数据(附代码)

    本文教你如何在BigQueryML中使用K均值聚类对数据进行分组,进而更好地理解和描述。 目前,BigQueryML支持无监督学习-可以利用K均值算法对数据进行分组。...假设你是一个拥有客户交易数据的零售商,有多种方法可以对此数据集进行聚类,这取决于你想要对聚类做什么操作。 我们可以在顾客中找到自然群体,这就是所谓的客户细分。...然后,将数据集中在该字段的属性上。 2. 找出给定客户/项目/其他属于哪个聚类。 3. 理解聚类属性的内容。 4. 利用这一理解做出决策。 在本文中,我将演示对伦敦自行车共享数据的聚类方法。...如果忽略聚类的数量,BigQueryML将根据训练数据集中的总行数选择一个合理的缺省值,还可以通过超参数调优来找到一个更优的数字。...检查聚类 可以使用以下方法查看聚类图心-本质上是模型中4个因子的值: 只要稍微做一点SQL操作,便可以获得上表的主元: 输出是: 聚类属性 若要可视化此表,单击“在DataStudio中导出”并选择“条状表

    1.1K30

    构建端到端的开源现代数据平台

    • 数据可视化:这是我们实际探索数据并以不同数据产品(如仪表板和报告)的形式从中产生价值的地方。这个时代的主要优势之一是现在拥有成熟的开源数据可视化平台并可以以简化的方式进行部署。...现在已经选择了数据仓库,架构如下所示: 在进入下一个组件之前,将 BigQuery 审计日志存储在专用数据集中[14](附加说明[15]),这些信息在设置元数据管理组件时会被用到。...它有非常丰富的 API[32],强制执行元数据模式[33],并且已经有很长的连接器列表[34]。...理论上这对于数据平台来说是两个非常重要的功能,但正如我们所见,dbt 在这个阶段可以很好地实现它们。尽管如此让我们讨论一下如何在需要时集成这两个组件。...](https://cloud.google.com/bigquery/docs/materialized-views-intro) [14] 将 BigQuery 审计日志存储在专用数据集中: [https

    7.2K10

    Apache Hudi 0.15.0 版本发布

    这简化了启用元数据表时的清理表服务。该配置现已弃用,并将在下一个版本后删除。...Hudi-Native HFile 读取器 Hudi 使用 HFile 格式作为基本文件格式,用于在元数据表 (MDT) 中存储各种元数据,例如文件列表、列统计信息和布隆过滤器,因为 HFile 格式针对范围扫描和点查找进行了优化...这些旨在包含有关如何在 StreamSync 的下一轮同步中从源使用数据并写入(例如,并行性)的详细信息。这允许用户控制源读取和数据写入目标 Hudi 表的行为和性能。...• hoodie.datasource.meta.sync.glue.partition_change_parallelism :更改操作(如创建、更新和删除)的并行性。...使用元数据表进行 BigQuery 同步优化 现在如果启用了元数据表,BigQuery Sync 会从元数据表加载一次所有分区,以提高文件列表性能。

    1.3K10

    【干货】TensorFlow协同过滤推荐实战

    【导读】本文利用TensorFlow构建了一个用于产品推荐的WALS协同过滤模型。作者从抓取数据开始对模型进行了详细的解读,并且分析了几种推荐中可能隐藏的情况及解决方案。...Google Analytics 360将网络流量信息导出到BigQuery,我是从BigQuery提取数据的: # standardSQL WITH visitor_page_content AS(...你可能需要使用不同的查询将数据提取到类似于此表的内容中: ? 这是进行协同过滤所需的原始数据集。很明显,你将使用什么样的visitorID、contentID和ratings将取决于你的问题。...这一点很重要,因为这个预处理功能必须在推断(预测)过程中作为TensorFlow serving graph的一部分。...——你可能不会推荐用户昨天阅读的项目(因为它在你的训练数据集中),但是批处理预测代码确实可以访问实时读取的文章流,所以你将推荐他们几分钟前阅读的文章。

    3.5K110
    领券