首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Akka-http logrequest不记录请求正文

Akka-HTTP是一个基于Akka框架的高性能、异步、可扩展的HTTP服务器和客户端库。它提供了一套强大的工具和API,用于构建可靠的、高性能的Web应用程序。

在Akka-HTTP中,logrequest是一个用于记录HTTP请求的方法。然而,默认情况下,logrequest方法不会记录请求正文(request body)。这是因为请求正文可能包含敏感信息,如用户凭证、密码等,为了保护用户数据的安全性,Akka-HTTP默认不记录请求正文。

尽管如此,如果需要记录请求正文,可以通过配置Akka-HTTP来实现。具体而言,可以使用Akka-HTTP提供的logRequest方法,并传递一个自定义的日志记录器(logger)来记录请求正文。以下是一个示例代码:

代码语言:txt
复制
import akka.http.scaladsl.server.Directives._
import akka.event.Logging

val route = logRequest(Logging.InfoLevel, request => {
  val requestBody = request.entity.toStrict(5.seconds).map(_.data.utf8String)
  s"Request: ${request.method.value} ${request.uri} with body: $requestBody"
}) {
  // 路由处理逻辑
}

// 使用route启动HTTP服务器

在上述示例中,我们使用logRequest方法来记录请求,并传递一个自定义的日志记录器。在日志记录器中,我们通过request.entity.toStrict方法获取请求正文,并将其记录在日志中。

需要注意的是,记录请求正文可能会增加日志的大小和复杂性,因此在生产环境中应谨慎使用。另外,为了保护用户数据的安全性,建议在日志中不记录敏感信息。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体品牌商,无法提供相关链接。但腾讯云提供了一系列云计算产品,如云服务器、云数据库、云存储等,可以根据具体需求选择适合的产品。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • restapi(0)- 平台数据维护,写在前面

    在云计算的推动下,软件系统发展趋于平台化。云平台系统一般都是分布式的集群系统,采用大数据技术。在这方面akka提供了比较完整的开发技术支持。我在上一个系列有关CQRS的博客中按照实际应用的要求对akka的一些开发技术进行了介绍。CQRS模式着重操作流程控制,主要涉及交易数据的管理。那么,作为交易数据产生过程中发挥验证作用的一系列基础数据如用户信息、商品信息、支付类型信息等又应该怎样维护呢?首先基础数据也应该是在平台水平上的,但数据的采集、维护是在系统前端的,比如一些web界面。所以平台基础数据维护系统是一套前后台结合的系统。对于一个开放的平台系统来说,应该能够适应各式各样的前端系统。一般来讲,平台通过定义一套api与前端系统集成是通用的方法。这套api必须遵循行业标准,技术要普及通用,这样才能支持各种异类前端系统功能开发。在这些要求背景下,相对gRPC, GraphQL来说,REST风格的http集成模式能得到更多开发人员的接受。

    02

    akka-grpc - 基于akka-http和akka-streams的scala gRPC开发工具

    关于grpc,在前面的scalaPB讨论里已经做了详细的介绍:google gRPC是一种全新的RPC框架,在开源前一直是google内部使用的集成工具。gRPC支持通过http/2实现protobuf格式数据交换。protobuf即protocol buffer,是google发明的一套全新的序列化传输协议serialization-protocol,是二进制编码binary-encoded的,相对java-object,XML,Json等在空间上占有优势,所以数据传输效率更高。由于gRPC支持http/2协议,可以实现双向通讯duplex-communication,解决了独立request/response交互模式在软件编程中的诸多局限。这是在系统集成编程方面相对akka-http占优的一个亮点。protobuf格式数据可以很方便的转换成 json格式数据,支持对外部系统的的开放协议数据交换。这也是一些人决定选择gRPC作为大型系统微服务集成开发工具的主要原因。更重要的是:用protobuf和gRPC进行client/server交互不涉及任何http对象包括httprequest,httpresponse,很容易上手使用,而且又有在google等大公司内部的成功使用经验,用起来会更加放心。

    02

    SDP(0):Streaming-Data-Processor - Data Processing with Akka-Stream

    再有两天就进入2018了,想想还是要准备一下明年的工作方向。回想当初开始学习函数式编程时的主要目的是想设计一套标准API給那些习惯了OOP方式开发商业应用软件的程序员们,使他们能用一种接近传统数据库软件编程的方式来实现多线程,并行运算,分布式的数据处理应用程序,前提是这种编程方式不需要对函数式编程语言、多线程软件编程以及集群环境下的分布式软件编程方式有很高的经验要求。前面试着发布了一个基于scalaz-stream-fs2的数据处理工具开源项目。该项目基本实现了多线程的数据库数据并行处理,能充分利用域内服务器的多核CPU环境以streaming,non-blocking方式提高数据处理效率。最近刚完成了对整个akka套装(suite)的了解,感觉akka是一套理想的分布式编程工具:一是actor模式提供了多种多线程编程方式,再就是akka-cluster能轻松地实现集群式的分布式编程,而集群环境变化只需要调整配置文件,无需改变代码。akka-stream是一套功能更加完整和强大的streaming工具库,那么如果以akka-stream为基础,设计一套能在集群环境里进行分布式多线程并行数据处理的开源编程工具应该可以是2018的首要任务。同样,用户还是能够按照他们熟悉的数据库应用编程方式轻松实现分布式多线程并行数据处理程序的开发。

    01

    akka-streams - 从应用角度学习:basic stream parts

    实际上很早就写了一系列关于akka-streams的博客。但那个时候纯粹是为了了解akka而去学习的,主要是从了解akka-streams的原理为出发点。因为akka-streams是akka系列工具的基础,如:akka-http, persistence-query等都是基于akka-streams的,其实没有真正把akka-streams用起来。这段时间所遇到的一些需求也是通过集合来解决的。不过,现在所处的环境还是逼迫着去真正了解akka-streams的应用场景。现状是这样的:跨入大数据时代,已经有大量的现代IT系统从传统关系数据库转到分布式数据库(非关系数据库)了。不难想象,这些应用的数据操作编程不说截然不同吧,肯定也会有巨大改变。特别是在传统SQL编程中依赖数据关系的join已经不复存在了,groupby、disctict等操作方法也不是所有的分布式数据库都能支持的。而这些操作在具体的数据呈现和数据处理中又是不可缺少的。当然,有很多需求可以通过集合来满足,但涉及到大数据处理我想最好还是通过流处理来实现,因为流处理stream-processing的其中一项特点就是能够在有限的内存空间里处理无限量的数据。所以流处理应该是分布式数据处理的理想方式了。这是这次写akka-streams的初衷:希望能通过akka-streams来实现分布式数据处理编程。

    01

    restapi(4)- rest-mongo : MongoDB数据库前端的httpserver

    完成了一套标准的rest风格数据库CRUD操作httpserver后发现有许多不足。主要是为了追求“通用”两个字,想把所有服务接口做的更“范generic”些,结果反而限制了目标数据库的特点,最终产生了一套功能弱小的玩具。比如说吧:标准rest风格getbyId需要所有的数据表都具备id这个字段,有点傻。然后get返回的结果集又没有什么灵活的控制方法如返回数量、字段、排序等。特别对MongoDB这样的在查询操作方面接近关系式数据库的分布式数据库:上篇提到过,它的query能力强大,条件组合灵活,如果不能在网络服务api中体现出来就太可惜了。所以,这篇博文会讨论一套专门针对MongoDB的rest-server。我想达到的目的是:后台数据库是MongoDB,通过httpserver提供对MongoDB的CRUD操作,客户端通过http调用CRUD服务。后台开发对每一个数据库表单使用统一的标准增添一套新的CRUD服务。希望如此能够提高开发效率,减少代码出错机会。

    02

    Akka-CQRS(9)- gRPC,实现前端设备与平台系统的高效集成

    前面我们完成了一个CQRS模式的数据采集(录入)平台。可以预见:数据的产生是在线下各式各样的终端系统中,包括web、桌面、移动终端。那么,为了实现一个完整的系统,必须把前端设备通过某种网络连接形式与数据采集平台集成为一体。有两种方式可以实现需要的网络连接:Restful-api, gRPC。由于gRPC支持http/2通讯协议,支持持久连接方式及双向数据流。所以对于POS设备这样的前端选择gRPC作为网络连接方式来实现实时的操作控制应该是正确的选择,毕竟采用恒久连接和双向数据流效率会高很多。gRPC是google公司的标准,基于protobuffer消息:一种二进制序列化数据交换机制。gRPC的优势在这里就不再细说,读者可以参考前面有关gRPC的讨论博文。

    02

    alpakka-kafka(10)-用kafka实现分布式近实时交易

    随着网上购物消费模式热度的不断提高,网上销售平台上各种促销手段也层出不穷,其中“秒购”已经是各种网站普遍流行的促销方式了。“秒购”对数据的实效性和精确性要求非常高,所以通过分布式运算实现高并发数据处理应该是正确的选择。不过,高并发也意味着高频率的数据操作冲突,而高频使用“锁”又会严重影响效率及容易造成不可控异常,所以又被迫选择单线程运行模式。单线程、分布式虽然表面相悖,不过如上篇博文所述:可以利用akka-cluster-sharding分片可指定调用的特性将一种商品的所有操作放到同一个shard上运算(因为shard即是actor,mailbox里的运算指令是按序执行的)可容许在一个分布式环境下有多个分片来同时操作。如此可在获取分布式运算高效率的同时又保证了数据的安全性和完整性。

    02
    领券