首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Akka gRPC + Slick应用程序导致"IllegalStateException:无法初始化ExecutionContext;AsyncExecutor已关闭“

Akka gRPC是一个基于Akka和gRPC的框架,用于构建分布式系统和微服务。它结合了Akka的并发模型和gRPC的高性能远程过程调用(RPC)机制,提供了一种简单且可靠的方式来开发分布式应用程序。

Slick是一个功能强大的轻量级数据库访问库,它提供了对关系型数据库的类型安全的异步访问。它允许开发人员使用Scala语言来编写数据库查询和操作,同时提供了丰富的功能和灵活性。

"IllegalStateException:无法初始化ExecutionContext;AsyncExecutor已关闭"是一个错误消息,表示在初始化执行上下文时出现了问题,因为AsyncExecutor已经关闭。这通常是由于在使用Slick进行数据库操作时,执行上下文没有正确地初始化或被关闭导致的。

要解决这个问题,可以采取以下步骤:

  1. 确保在使用Slick之前正确地初始化执行上下文。可以使用Akka提供的执行上下文或自定义的执行上下文。
  2. 检查代码中是否存在关闭执行上下文的操作。如果存在,确保在所有数据库操作完成之后再关闭执行上下文。
  3. 确保数据库连接池的配置正确,并且没有被意外关闭。

推荐的腾讯云相关产品:

  • 云服务器(CVM):提供可扩展的计算能力,用于部署和运行应用程序。
  • 云数据库MySQL版:提供高性能、可扩展的关系型数据库服务,适用于各种应用场景。
  • 云原生容器服务(TKE):提供高度可扩展的容器化应用程序管理平台,简化应用程序的部署和管理。
  • 人工智能机器学习平台(AI Lab):提供丰富的人工智能和机器学习工具和服务,帮助开发人员构建智能应用程序。

更多关于腾讯云产品的信息,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

akka-grpc - 基于akka-http和akka-streams的scala gRPC开发工具

关于grpc,在前面的scalaPB讨论里已经做了详细的介绍:google gRPC是一种全新的RPC框架,在开源前一直是google内部使用的集成工具。gRPC支持通过http/2实现protobuf格式数据交换。protobuf即protocol buffer,是google发明的一套全新的序列化传输协议serialization-protocol,是二进制编码binary-encoded的,相对java-object,XML,Json等在空间上占有优势,所以数据传输效率更高。由于gRPC支持http/2协议,可以实现双向通讯duplex-communication,解决了独立request/response交互模式在软件编程中的诸多局限。这是在系统集成编程方面相对akka-http占优的一个亮点。protobuf格式数据可以很方便的转换成 json格式数据,支持对外部系统的的开放协议数据交换。这也是一些人决定选择gRPC作为大型系统微服务集成开发工具的主要原因。更重要的是:用protobuf和gRPC进行client/server交互不涉及任何http对象包括httprequest,httpresponse,很容易上手使用,而且又有在google等大公司内部的成功使用经验,用起来会更加放心。

02
  • Akka-CQRS(9)- gRPC,实现前端设备与平台系统的高效集成

    前面我们完成了一个CQRS模式的数据采集(录入)平台。可以预见:数据的产生是在线下各式各样的终端系统中,包括web、桌面、移动终端。那么,为了实现一个完整的系统,必须把前端设备通过某种网络连接形式与数据采集平台集成为一体。有两种方式可以实现需要的网络连接:Restful-api, gRPC。由于gRPC支持http/2通讯协议,支持持久连接方式及双向数据流。所以对于POS设备这样的前端选择gRPC作为网络连接方式来实现实时的操作控制应该是正确的选择,毕竟采用恒久连接和双向数据流效率会高很多。gRPC是google公司的标准,基于protobuffer消息:一种二进制序列化数据交换机制。gRPC的优势在这里就不再细说,读者可以参考前面有关gRPC的讨论博文。

    02

    Akka-Cluster(5)- load-balancing with backoff-supervised stateless computation - 无状态任务集群节点均衡分配

    分布式程序运算是一种水平扩展(scale-out)运算模式,其核心思想是能够充分利用服务器集群中每个服务器节点的计算资源,包括:CPU、内存、硬盘、IO总线等。首先对计算任务进行分割,然后把细分的任务分派给各节点去运算。细分的任务相互之间可以有关联或者各自为独立运算,使用akka-cluster可以把任务按照各节点运算资源的负载情况进行均匀的分配,从而达到资源的合理充分利用以实现运算效率最大化的目的。如果一项工作可以被分割成多个独立的运算任务,那么我们只需要关注如何合理地对细分任务进行分配以实现集群节点的负载均衡,这实际上是一种对无需维护内部状态的运算任务的分配方式:fire and forget。由于承担运算任务的目标actor具体的部署位置是由算法决定的,所以我们一般不需要控制指定的actor或者读取它的内部状态。当然,如果需要的话我们还是可以通过嵌入消息的方式来实现这样的功能。

    02

    Akka-Cluster(2)- distributed pub/sub mechanism 分布式发布/订阅机制

    上期我们介绍了cluster singleton,它的作用是保证在一个集群环境里永远会有唯一一个singleton实例存在。具体使用方式是在集群所有节点部署ClusterSingletonManager,由集群中的leader节点选定其中一个节点并指示上面的ClusterSingletonManager运行一个cluster singleton实例。与singleton实例交互则通过即时构建ClusterSingletonProxy实例当作沟通目标。从应用场景来说cluster singleton应该是某种pull模式的应用:我们把singleton当作中央操作协调,比如说管理一个任务清单,多个ClusterSingletonProxy从任务清单中获取(pull)自己应该执行的任务。如果需要实现push模式的任务派送:即由singleton主动通知集群里某种类型的actor执行任务,那么通过ClusterSingletonProxy沟通就不适用了,使用pub/sub方式是一个可行的解决方案。

    04

    Akka-CQRS(0)- 基于akka-cluster的读写分离框架,构建gRPC移动应用后端架构

    上一篇我们讨论了akka-cluster的分片(sharding)技术。在提供的例子中感觉到akka这样的分布式系统工具特别适合支持大量的带有内置状态的,相对独立完整的程序在集群节点上分布运算。这里重点要关注这些程序的内部状态,它们会占用系统资源包括内存。把状态保存在内存里相对存放在数据库里能显著提高程序运算效率。在系统出现各种情况下对这些非持久化的程序状态的管理自然就成为了需要考虑的问题,此其一。在一个多用户、高并发的大型分布式系统里往往数据库数据使用会产生大量的冲突影响系统性能。如果能够把数据库的写入和读取分成互不关联的操作就可以避免很多资源占用的冲突。

    02

    PICE(6):集群环境里多异类端点gRPC Streaming - Heterogeneous multi-endpoints gRPC streaming

    gRPC Streaming的操作对象由服务端和客户端组成。在一个包含了多个不同服务的集群环境中可能需要从一个服务里调用另一个服务端提供的服务。这时调用服务端又成为了提供服务端的客户端了(服务消费端)。那么如果我们用streaming形式来提交服务需求及获取计算结果就是以一个服务端为Source另一个服务端为通过式passthrough Flow的stream运算了。讲详细点就是请求方用需求构建Source,以连接Flow的方式把需求传递给服务提供方。服务提供方在Flow内部对需求进行处理后再把结果返回来,请求方run这个连接的stream应该就可以得到需要的结果了。下面我们就针对以上场景在一个由JDBC,Cassandra,MongoDB几种gRPC服务组成的集群环境里示范在这几个服务之间的stream连接和运算。

    03
    领券