但遗憾的是,仍然有相当多情况无论怎样优化都不可能跑得更快。这里做 SQL 性能优化真是让人干瞪眼 介绍了一些,并做了相应的技术分析。由于其理论基础关系代数的局限,SQL缺乏离散性和有序集合等特性的支持使得SQL在表达某些高性能算法时异常困难,甚至完全写不出来,只能采用比较笨的低性能算法,眼睁睁地看着硬件资源被白白浪费。在 写着简单跑得又快的数据库语言 SPL 中有对SQL理论基础缺陷的通俗解释。也就是说,SQL的慢是理论性的,这种问题仅仅由数据库在工程层面优化只能局部改善(确实有不少商业数据库能够自动识别某些SQL并转换成高性能算法),而不能根本地解决问题(情况复杂时数据库优化引擎都会“晕”掉,只能按SQL的书写逻辑执行成低性能算法)。理论性的缺陷当然也不能寄希望于更换数据库而得到解决,只要还是用SQL,即使采用分布式数据库、内存数据库也还是这种情况,在消耗更大成本的资源后当然也能有一定的性能提升,但和硬件本应能够达到的性能仍然有巨大的差距。
先说观点:因为还没找到更好的。 接下来说原因,首先来看看大数据平台都在干什么。 原因 结构化数据计算仍是重中之重 大数据平台主要是为了应对海量数据存储和分析的需求,海量数据存储的确不假,除了生产经营产生的结构化数据,还有大量音视频等非结构化数据,这部分数据很大,占用的空间也很多,有时大数据平台 80% 以上都存储着非结构化数据。不过,数据光存储还不行,只有利用起来才能产生价值,这就要进行分析了。 大数据分析要分结构化和非结构化数据两部分讨论。 结构化数据主要是企业生产经营过程中产生的业务数据,可以说是企业的
随着数据量不断增长和业务复杂度逐渐攀升,数据处理效率面临巨大挑战。最典型的表现是面向分析型场景的数据仓库性能问题越来越突出,压力大、性能低,查询时间长甚至查不出来,跑批跑不完造成生产事故等问题时有发生。当数据仓库出现性能问题时便不能很好服务业务了。
前言:今天学长跟大家讲讲《快出数量级的性能是怎样炼成的》,废话不多说,直接上干货~
这是怎么做到的呢? 这些被提速的场景都有一个共同点:原先都是用各种数据库(也有 HADOOP/Spark)上的 SQL 实现的,包括查询用的几百行 SQL 也有跑批用的几千行存储过程,然后我们改用集算器的 SPL 重新实现之后就有了这样的效果。 集算器 SPL 有什么神奇之处?是不是能让各种运算跑得更快? 有点遗憾,并没有这样的好事。集算器也是一个软件,而且是用 Java 写的,完成同样运算通常比 C/C++ 写的数据库还要慢一点。 那是怎么回事?
当前绝大部分数据仓库都会采用 SQL,SQL 发展了几十年已经成为数据库界的标准语言,用户量巨大,所以支持 SQL 对于数据仓库来讲也是很正常的。但是,在当代大数据背景下,业务复杂度节节攀升,在以计算为主要任务的数据仓库场景下,SQL 似乎越来越不够用了。典型表现是一些数据仓库开始集成 Python 的能力,将 Python 这样的非 SQL 语言融入到数据仓库中。且不论两种风格迥异的开发语言是否能很好融合互补,单看这样的趋势已经足够表现出业界对 SQL 能力的一些质疑。
我们知道索引至关重要,合理的索引使用能够在很大程度上改善数据库的性能。然而很多人都会走入这样一个误区:走索引的SQL语句的性能一定比全表扫描好。真的是这样吗?今天我们将围绕B*Tree索引的使用,解读如何合理地使用索引,以及如何通过正确的索引来提高性能。 影响数据库性能的因素主要有以下几个: DB call Hard Parse+Soft Parse Wait Event I/O 不合理的设计与开发 在以上几个因素中,我认为I/O的问题是最重要的,也是很多数据库最普遍的性能问题。因此SQL优化的核心就是
OLAP(Online Analytical Processing)是指在线联机分析,基于数据查询计算并实时获得返回结果。日常业务中的报表、数据查询、多维分析等一切需要即时返回结果的数据查询任务都属于OLAP的范畴。对应的,行业内也有相应产品来满足这类需求,那就是OLAP Server。
理想的机器学习场景是给到数据,训练模型后就能直接上线服务。然而真实的 AI 应用落地过程非常复杂,并不是有数据、懂算法就可以了。
LogiKM(改名KnowStreaming) 是滴滴开源的Kafka运维管控平台, 有兴趣一起参与参与开发的同学,但是怕自己能力不够的同学,可以联系我,当你导师带你参与开源! 。
作者 | 山宝银,腾讯后台高级工程师,专注于分布式 NoSQL 存储领域的技术研发工作,参与腾讯多个自研存储系统的开发,在分布式系统、高可用与高性能服务等领域有较丰富的经验。
当你在电商平台秒杀商品或者在社交网络刷热门话题的时候,可以很明显感受到当前网络数据流量的恐怖,几十万商品刚开抢,一秒都不到就售罄;哪个大明星出轨的消息一出现,瞬间阅读与转发次数可以达到上亿。作为终端用户的我们可能会思考,服务系统是怎么在这样严峻的流量环境中存活下来的。
分布式数据库系统通常使用较小的计算机系统,每台计算机可单独放在一个地方,每台计算机中都可能有DBMS的一份完整拷贝副本,或者部分拷贝副本,并具有自己局部的数据库,位于不同地点的许多计算机通过网络互相连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。余军讲师为你讲解分布式数据库在金融行业的创新实践。 余军 PingCAP 高级技术总监,金融行业首席架构师;开源软件的忠实爱好者,负责金融行业基于 TiDB 产品的解决方案、产品架构咨询和建设规划。主要工作经历:富麦信息科技有限公司 CTO ,中
大模型(LLM)的浪潮已经涌动一年多了,尤其是以 GPT-4、Gemini-1.5、Claude-3 等为代表的模型你方唱罢我登场,成为当之无愧的风口。在 LLM 这条赛道上,有的研究专注于增加模型参数,有的疯狂卷多模态…… 这当中,LLM 处理上下文长度的能力成为了评估模型的一个重要指标,更强的上下文意味着模型拥有更强的检索性能。例如有些模型一口气可以处理高达 100 万 token 的能力让不少研究者开始思考,RAG (Retrieval-Augmented Generation,检索增强生成)方法还有存在的必要吗?
在Java应用程序中,与数据库进行交互是一个常见的任务。为了更有效地管理数据库连接并提高性能,数据库连接池是一种常见的解决方案。Druid是一个流行的JDBC数据库连接池,它具有丰富的功能和高性能。本博客将详细介绍Druid连接池,包括它的优点、配置、使用方法以及示例代码。
良好的schema设计原则是普遍适用的,但是MySQL有他自己的实现细节要注意,概况来讲,尽可能保持任何东西小而简单总是好的。
数据库语言的目标 要说清这个目标,先要理解数据库是做什么的。 数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的 OLAP 和 OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。 我们知道,SQL 是目前数据库的主流语言。那么,用 SQL 做这两件事是不是很方便呢? 事务类功能主要解决数据在写入和读出时要保持的一致性,实现这件事的难度并不小,但对于应用程序的接口却非常简单,用于操纵数据库读写的代码也很简
数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的 OLAP 和 OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。
现代应用无时无刻不在与数据打交道,数据计算无处不在,报表统计、数据分析、业务处理不一而足。当前数据处理的主要手段仍然是以关系数据库为代表的相关技术,虽然使用高级语言(如Java)硬编码也能实现各类计算,但远不如数据库(SQL)方便,数据库在当代数据处理中仍然发挥举足轻重的作用。
OceanBase是由蚂蚁集团完全自主研发的国产原生分布式数据库。它的设计初衷是为了满足日益增长的数据处理需求,特别是在金融、电商等对数据库性能、稳定性和扩展性有极高要求的行业中。OceanBase采用了分布式架构和一体化设计,兼具分布式架构的扩展性与集中式架构的性能优势,通过一套引擎同时支持OLTP(在线事务处理)和OLAP(在线分析处理)的混合负载。
DCM 是什么 现代应用无时无刻不在与数据打交道,数据计算无处不在,报表统计、数据分析、业务处理不一而足。当前数据处理的主要手段仍然是以关系数据库为代表的相关技术,虽然使用高级语言(如 Java)硬编码也能实现各类计算,但远不如数据库(SQL)方便,数据库在当代数据处理中仍然发挥举足轻重的作用。 不过,随着信息技术的发展,存储与计算分离、微服务、前置计算、边缘计算等架构与概念的兴起,过于沉重、封闭的数据库在应对这些场景时越来越显得捉襟见肘。数据库要求数据入库才能计算,但面对丰富的多样数据源时,数据入库不仅效
随着大数据时代的到来,数据库性能优化已成为企业提升核心竞争力的关键所在。AntDB作为一款优秀的国产数据库,其性能表现在很多场景下已经能够与国际知名数据库相媲美。
InterSystems SQL提供对InterSystems IRIS®Data Platform数据库中存储的数据的无懈可击的标准关系访问。
(Response time)或者叫执行时间(Execution time)。想要提升响应时间这个性能指标,你可以理解为让计算机“跑得更快”。
正常情况下都是在主Server上执行的,此时主Server上DB仍然可以正常访问。
关系数据库提供了SQL,因而有较强的计算能力,但很遗憾的是,这个计算能力是封闭的。所谓计算封闭性,是指要被数据库计算和处理的数据,必须事先装入数据库之内,数据在数据库内部还是外部是很明确的。与之相对,计算开放性是指数据无需进入内部就可以直接处理多种来源的数据。
在本系列的第 18 篇文章中,我详细讲解了从 MS Access 数获取数据,通过 PQ 完成进出存查询的过程。在示例中, stock_movement_details 查询大约 28000+ 行,计算出基于月份的进出存大致耗时 20 秒左右。使用 Excel 实现这样的输出报表有一定难度,从这个角度来说 PQ 是一个巨大的飞跃。但 28000 条的数据耗时 20 秒,性能就比较低了,这引起了我的好奇。经过一番思考和探索,发现了一些可以提高性能的做法。
YugabyteDB是一个高性能的分布式SQL数据库,用于支持全球的、因特网规模的应用程序。YugabyteDB使用高性能文档存储、每个碎片分布式一致复制和多碎片ACID事务的独特组合(灵感来自谷歌Spanner)构建,它同时提供扩展的RDBMS和因特网规模的OLTP工作负载,具有低的查询延迟、极好的抗故障能力和全局数据分布。作为云本地数据库,它可以跨公共和私有云部署,也可以轻松地部署在Kubernetes环境中。
MySQL是一种流行的关系型数据库管理系统,由瑞典MySQL AB公司开发,现属于甲骨文公司(Oracle)旗下产品。MySQL是基于C语言开发的,它具有高性能、可扩展性、易用性等特点,并且支持大量的用户访问。
Stack Overflow 是一个与程序相关的 IT 技术问答网站,其技术架构主要采用微软的技术栈,包括 C#、ASP.NET、SQL Server 等。此外,Stack Overflow 还使用了一些开源框架,例如 HAProxy、Redis 等。 具体来说,Stack Overflow 的技术实现包括以下几个部分:
与 SQL 相比,SPL 不仅写得简单,跑得也更快,既可以独立使用还能与应用集成嵌入,同时适用于多种应用场景。
数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的 OLAP 和 OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。 我们知道,SQL是目前数据库的主流语言。那么,用SQL做这两件事是不是很方便呢?
为了获得更好的数据库计算性能,经常会采用 MPP 数据库,如 Greenplum、Vertica、IQ、TD Aster Data 等。MPP 有较好的性能,但应用成本很高。MPP 的硬件资源消耗很大,需要较高的硬件成本,如果使用商用软件还需要支付昂贵的授权费用。MPP 的运维也很复杂,每个节点需要单独维护,分布式架构下数据均匀分布和一致性保证等都会增加运维的复杂度。总之一句话,就是沉重昂贵。
随着各行各业移动互联和云计算技术的普及发展,大数据计算已深入人心,最常见的比如 flink、spark 等。这些大数据框架,采用中心化的 Master-Slave 架构,依赖和部署比较重,每个任务也有较大开销,有较大的使用成本。RocketMQ Streams 着重打造轻量计算引擎,除了消息队列,无额外依赖,对过滤场景做了大量优化,性能提升 3-5 倍,资源节省 50%-80%。
内容来源:2018 年 1 月 27 日,润乾软件创始人蒋步星在“TECH INSIGHT 暨 ArchData技术峰会成都站”进行《轻量级大数据引擎》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
2015年11月20日~21日,Oracle技术嘉年华大会在北京召开,感谢为大会奉献精彩演讲的嘉宾,现在PPT资源已经全部整理完毕,现在开放下载。 链接: http://pan.baidu.com/s/1pJ8GjKB 密码: 3gxf 以下是我的一些观点再次分享:对于云时代的DBA们,一定要从以前较为纯粹的后端运维走向前端和主动运维,向DevOps取经。 SQL审核变被动救火为主动防御,对于今天的DevOps时代势在必行,而面对各种互联网+模式的应用和整合集中的数据库聚集,进行SQL审核和优化工作又刻不
数据库语言的目标 要说清这个目标,先要理解数据库是做什么的。 数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的 OLAP 和 OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。 我们知道,SQL 是目前数据库的主流语言。那么,用 SQL 做这两件事是不是很方便呢? 事务类功能主要解决数据在写入和读出时要保持的一致性,实现这件事的难度并不小,但对于应用程序的接口却非常简单,用于操纵数据库读写的代码也很
数据库语言的目标 要说清这个目标,先要理解数据库是做什么的。 数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的 OLAP 和 OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。我们知道,SQL 是目前数据库的主流语言。那么,用 SQL 做这两件事是不是很方便呢?事务类功能主要解决数据在写入和读出时要保持的一致性,实现这件事的难度并不小,但对于应用程序的接口却非常简单,用于操纵数据库读写的代码也很简单。
所有数据库包括Oracle的sql优化都是针对程序员的,而不是针对dba的,第一,尽量防止模糊,明确指出,即用列名代替*,第二,在where语句上下工夫。第三多表查询和子查询,第四尽量使用绑定。
中间表是数据库中专门存放中间计算结果的数据表,往往是为了前端查询统计更快或更方便而在数据库中建立的汇总表,由于是由原始数据加工而成的中间结果,因此被称为中间表。
InfluxDB是一个由InfluxData开发的开源时序型数据库,专注于海量时序数据的高性能读、高性能写、高效存储与实时分析等,在DB-Engines Ranking时序型数据库排行榜上排名第一,广泛应用于DevOps监控、IoT监控、实时分析等场景。
来自社区,回归社区。非常感谢各位 TiDBer 在之前 【TiDBer 唠嗑茶话会丨征集 TiDB 数据库性能优化大师,你是如何优化 TiDB 数据库性能的呐?】( https://asktug.com/t/topic/1005563 )里提供的各种性能优化方法。这篇帖子收集整理了大家推荐的各个方面的 TiDB 数据库性能优化方法,欢迎各位 TiDBer 持续补充更新~
本文共1400字,建议阅读8分钟。 大数据的技术本质就是高性能,性能优化也是程序员们的永恒话题。
特征:SQL编写,无问单机/集群、无问商用/开源、无问大牌/新秀 现在为啥跑不快? 硬件不变,提速关键在于设计出计算量更少的算法。 然后再用程序语言写出来。 可惜,SQL受理论限制写不出这些低复杂度的算法,只能干瞪眼。 那,咋样才能快? 嗯,不能再用SQL了。 但也不能用Java,虽然写得出,但会累死人。 用SPL!简单代码实现高性能计算 SPL是啥?为啥管用? SPL是一款开源程序语言,专门对付结构化数据计算,我们将数十种高性能算法和存储融入SPL中,提速N倍不是梦! 读书
MySQL是一种开源的关系型数据库管理系统(RDBMS),由瑞典MySQL AB公司开发,现在由Oracle公司负责维护和支持。MySQL是最流行的数据库之一,被广泛用于各种应用程序和网站开发。 MySQL具有以下特点:
领取专属 10元无门槛券
手把手带您无忧上云