1.1 训练/开发/测试集
对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验证集,最后一部分作为测试集(test).接下来我们开始对训练集执行训练算法...,通过验证集或简单交叉验证集选择最好的模型.经过验证我们选择最终的模型,然后就可以在测试集上进行评估了.在机器学习的小数据量时代常见的做法是将所有数据三七分,就是人们常说的 70%训练集集,30%测试集...,但是在大数据时代,我们现在的数据量可能是百万级,那么验证集和测试集占数据总量的比例会趋向变得更小.因为验证集的目的就是验证不同的算法检验那种算法更加有效,在大数据时代我们可能不需要拿出 20%的数据作为验证集...最后一点,就算没有测试集也不要紧,测试集的目的是对最终选定的神经网络系统做出无偏评估,如果不需要无偏评估也可以不设置测试集所以如果只有验证集没有测试集.我们要做的就是在训练集上训练尝试不同的模型框架,在验证集上评估这些模型...)
一旦训练集上的偏差降低到一定的水平,可以检查一下方差有没有问题.为了评估方差我们要查看验证集性能.如果验证集和训练集的错误率误差较大即方差较大,最好的方法是采用更多数据.如果不能收集到更多的数据,我们可以采用正则化来减少过拟合