首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

阴影贴图(DirectX12):阴影贴图不能正确渲染

阴影贴图(Shadow Mapping)是一种用于实现实时阴影效果的技术,常用于计算机图形学中。它通过在场景中的光源位置处渲染深度图,然后将深度图应用于场景的渲染过程中,以确定哪些区域应该被阴影覆盖。

阴影贴图的基本原理是,首先从光源的视角渲染场景,将深度信息存储在一个称为深度贴图的纹理中。然后,在场景的渲染过程中,对于每个像素,通过比较该像素与光源的深度值与深度贴图中的对应深度值,来确定该像素是否在阴影中。如果像素的深度值大于深度贴图中的深度值,那么该像素就在阴影中。

阴影贴图的优势在于其实时性和效果的逼真性。它可以在实时渲染中产生逼真的阴影效果,使场景更加真实和具有层次感。

阴影贴图在许多领域都有广泛的应用,包括游戏开发、虚拟现实、建筑可视化等。在游戏开发中,阴影贴图可以增强游戏场景的真实感,提升玩家的沉浸感。在虚拟现实中,阴影贴图可以增强虚拟环境的真实感,使用户更加身临其境。在建筑可视化中,阴影贴图可以帮助设计师更好地展示建筑物的外观和光影效果。

腾讯云提供了一系列与图形计算相关的产品和服务,例如云服务器、GPU云服务器、GPU容器服务等,可以满足用户在图形计算方面的需求。具体产品和服务的介绍可以参考腾讯云官方网站的相关页面。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Threejs入门之十七:给物体添加阴影

    在前面的章节中,我们已经实现了将物体添加到场景中,并设置了灯光等效果,但是,这并不是很真实,在真实的世界中,被灯光照射的物体是有阴影的,这一节我们就来给物体添加阴影。 在Threejs中给物体添加阴影,需要注意以下几点 1.要选择具有投射阴影效果的材质 我们前面也提到过,基础网格材质MeshBasicMaterial是不受光照影响的,我们如果需要有阴影效果,就不能选择该材质 2.需要投射阴影的物体要设置castShadow属性 castShadow属性用于设置物体是否被渲染到阴影贴图中,默认为false,如果需要投影,则设置为true 3.接收阴影的物体要开启receiveShadow属性 receiveShadow属性用于设置材质是否接收阴影,默认为false,如果需要接收物体的投影,设置为true 4.灯光开启投射阴影castShadow属性 灯光也要设置castShadow为true,默认为false 5.渲染器设置允许在场景中使用阴影贴图 将渲染器的shadowMap.enabled属性设置为true,允许场景中使用阴影贴图 经过上面五步的设置,就可以开启物体的阴影效果了,具体实现代码如下

    01

    Unity Shader常用函数,标签,指令,宏总结(持续更新)

    UnityObjectToClipPos(v.vertex); 最基本的顶点变换,模型空间 ==》裁剪空间 mul(unity_ObjectToWorld, v.vertex); 顶点:模型空间 ==》世界空间,多用于顶点着色器 UnityObjectToWorldNormal(v.normal); 法线:模型空间 ==》世界空间,多用于顶点着色器,float3(归一化后fixed3) UnityWorldSpaceLightDir(i.worldPos.xyz); 仅前向渲染,世界空间顶点位置 ==》世界空间光源方向,多用于片元着色器,一般会顺带归一化(fixed3) UnityWorldSpaceViewDir(i.worldPos.xyz); 世界空间顶点位置 ==》世界空间视线方向,多用于片元着色器,一般会顺带归一化(fixed3) P.S.一般[0,1]范围内的尽量用低精度fixed类型,如单位矢量,颜色等 Tags{"lightmode"="forwardbase"}(字符串不区分大小写,编译时会自动转为所有字母大写) 指示光照模型为前向渲染的基本模式 #include "UnityCG.cginc"(字符串不区分大小写,编译时会自动转为所有字母大写) 包含大量基本内置函数,宏等,一般自带 #include "lighting.cginc"(字符串不区分大小写,编译时会自动转为所有字母大写) 包含基本光照属性,如 _LightColor0 UNITY_LIGHTMODEL_AMBIENT(使用大写) 环境光,一般取前三个分量rgb(xyz);基本光照模型需要有环境光,漫反射,高光等 基本纹理&法线贴图: TRANSFORM_TEX(v.uv, _MainTex); 基本纹理变换,用于顶点着色器,相当于v.uv*_MainTex_ST.xy + _MainTex_ST.zw;(其中xy存缩放,zw存偏移,对应面板参数);_MainTex_ST需额外定义 tex2D(_MainTex, i.uv); 基本纹理采样,用于片元着色器;一般会定义染色属性并与之相乘得到反射率(albedo),反射率作为环境光和漫反射计算的因子 UnpackNormalWithScale(packedNormal, _BumpScale); 反映射法线贴图采样结果得到顶点空间中的法线方向,同时计算凹凸映射的缩放;packedNormal为法线贴图直接采样结果,_BumpScale为凹凸缩放值;法线贴图必须进行导入设置为Normal Map UnityObjectToWorldDir(v.tangent.xyz); 方向(切线):模型空间 ==》世界空间,多用于顶点着色器 cross(worldNormal, worldTangent)*v.tangent.w 计算副法线,cross(,)两个向量叉积,用于得知两个坐标轴求第三个坐标轴朝向,w控制朝向的正负;知道三个朝向就可以构造变换矩阵了 TANGENT_SPACE_ROTATION 得到从模型空间到顶点空间的变换矩阵rotation,随后可直接进行如下计算,例如: mul(rotation, ObjSpaceLightDir(v.vertex)); 模型空间顶点位置 ==》模型空间光源方向==》顶点空间光源方向 mul(rotation, ObjSpaceViewDir(v.vertex)); 模型空间顶点位置 ==》模型空间视线方向==》顶点空间视线方向 多光源&前向渲染&光照衰减: Tags{"lightmode"="forwardbase"}(第一个Pass,全局性通用计算,只计算一次,不用开启混合) Tags{"lightmode"="forwardadd"}(第二个Pass,根据光源数目不同可能多次计算,需开启混合) 前向渲染的两种标签,分别位于不同的两个Pass,指示每个Pass的光照模式 #pragma multi_compile_fwdbase #pragma multi_compile_fwdadd 前向渲染的两种指令,只有每个Pass配置正确指令才可能得到正确的光照变量,如光照衰减值 UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos.xyz); 用于第二个Pass分别计算每个光源的衰减,atten为输出的衰减值,i为片元着色器的输入结构体,其内部数学运算根据各个光照的类型不同复杂度不一,具体可参考:https://github.com/candycat1992/Unity_Shaders_Book/issues/47 接收投影: SHADOW_COORDS(idx) 声明阴影纹理采样的坐标,用于顶点着色器输出结构体,idx为下一个可用插值寄存器(TEXCOORD)的索引值 TRANSFER_SHADOW(o); 用于在顶点着色器

    01

    Unity3d场景快速烘焙【2020】

    很多刚刚接触Unity3d的童鞋花了大量的时间自学,可总是把握不好Unity3d的烘焙,刚从一个坑里爬出来,又陷入另一个新的坑,每次烘焙一个场景少则几个小时,多则几十个小时,机器总是处于假死机状态,半天看不到结果,好不容易烘焙完了,黑斑、撕裂、硬边、漏光或漏阴影等缺陷遍布,惨不忍睹,整体效果暗无层次,或者苍白无力,灯光该亮的亮不起来,该暗的暗不下去,更谈不上有什么意境,痛苦的折磨,近乎失去了信心,一个团队从建模到程序,都没什么问题,可一到烘焙这一关,就堵得心塞,怎么也搞不出好的视觉效果,作品没法及时向用户交付,小姐姐在这里分享一些自己的经验,希望能帮到受此痛苦折磨的朋友,话不多说,开工!

    03

    Shader经验分享

    流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa

    04
    领券