Redis 的缓存淘汰算法则是通过实现 LFU 算法来避免「缓存污染」而导致缓存命中率下降的问题(Redis 没有预读机制)。
在Linux内核中使用了大量的链表结构来组织数据,包括设备列表以及各种功能模块中的数据组织。这些链表大多采用在include/linux/list.h实现的一个相当精彩的链表数据结构。
在linux内核中封装了一个通用的双向链表库,这个通用的链表库有很好的扩展性和封装性,它给我们提供了一个固定的指针域结构体,我们在使用的时候,只需要在我们定义的数据域结构体中包含这个指针域结构体就可以了,具体的实现、链接并不需要我们关心,只要调用提供给我们的相关接口就可以完成了。
本文对双向链表进行探讨,介绍的内容是Linux内核中双向链表的经典实现和用法。其中,也会涉及到Linux内核中非常常用的两个经典宏定义offsetof和container_of。内容包括: 1.Linux中的两个经典宏定义 2.Linux中双向链表的经典实现
在 Linux 源码 linux-5.6.18\include\linux\rculist.h 头文件中定义的就是 RCU 链表的操作 ,
本系列是对 陈莉君 老师 Linux 内核分析与应用[1] 的学习与记录。讲的非常之好,推荐观看
/**************************************************************** 文件内容:内核之链队操作 版本V1.0 作者:HFL 时间:2013-12-22 说明:用户态中链表每个节点包含数据域和指针域,而内核态是每个数据中包含链表 因此内核态链表一般是嵌套在某个包含数据成员的结构体来实现。 内核的链表应用非常广泛:进程管理,定时器,工作队列,运行队列。总之 内核对于多个数据的组织和多个熟悉的描述都是通过链表串起来的。 *****************************************************************/ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> MODULE_DESCRIPTION("My Module"); MODULE_ALIAS("My module"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("HFL21014"); struct student { char name[100]; int counter; struct list_head list; }; struct student *Mystudent; struct student *Temp_student; struct list_head student_list; struct list_head *pos; int Kernel_list_init() { int j = 0; INIT_LIST_HEAD(&student_list); Mystudent = kmalloc(sizeof(struct student)*5,GFP_KERNEL); memset(Mystudent,0,sizeof(struct student)*5); for(j=0;j<5;j++) { sprintf(Mystudent[i].name,"Student%d",j+1); Mystudent[j].counter = j+1; list_add( &(Mystudent[j].list), &student_list); } list_for_each(pos,&student_list) //遍历整个内核链表,pos其实就是一个for循环标量。中间临时使用,既不输入也不输出 { Temp_student = list_entry(pos,struct student,list); printk("hello,my student %d name: %s\n",Temp_student->counter,Temp_student->name); } return 0; } void Kernel_list_exit() { int k ; /* 模块卸载是要删除链表,并释放内存 */ for(k=0;k<10;jk++) { list_del(&(Mystudent[k].list)); } kfree(Mystudent); } module_init(Kernel_list_init);
本文讲述了Linux中RCU(Read-Copy-Update)机制在内存管理中的重要作用,以及如何在Linux内核中实现和管理RCU。在Linux内核中,RCU用于在多个进程共享相同内存空间时,保证这些进程之间的数据一致性。本文首先介绍了RCU的基本原理,然后逐步深入介绍了Linux内核中RCU的实现细节。最后,通过一个具体的例子,展示了如何在Linux内核中实现一个简单的RCU。
内存 是操作系统非常重要的资源,操作系统要运行一个程序,必须先把程序代码段的指令和数据段的变量从硬盘加载到内存中,然后才能被运行。如下图所示:
一、概念: 大多数内核子系统都是相互独立的,因此某个子系统可能对其它子系统产生的事件感兴趣。为了满足这个需求,也即是让某个子系统在发生某个事件时通知其它的子 系统,Linux内核提供了通知链的机制。通知链表只能够在内核的子系统之间使用,而不能够在内核与用户空间之间进行事件的通知。 通知链表是一个函数链表,链表上的每一个节点都注册了一个函数。当某个事情发生时,链表上所有节点对应的函数就会被执行。所以对于通知链表来说有一个通知 方与一个接收方。在通知这个事件时所运行的函数由被通知方决定,实际上也即是被通
链表是基本数据结构, 一开始学习数据结构时, 我一般这么定义, 对应实现从头或尾插入的处理函数,
多线程调试的主要任务是准确及时地捕捉被调试程序线程状态的变化的事件,并且GDB针对根据捕捉到的事件做出相应的操作,其实最终的结果就是维护一根叫thread list的链表。上面的调试命令都是基于thread list链表来实现的,后面会有讲到。
链表的主要意义就是将分散地址的数据域通过指针排列成有序的队列。因此数据域是链表不可或缺的一部分,但是在实际使用中需要不同类型的数据域,因此也就限制了链表的通用。Linux中在声明中抛弃了数据域,也就解决掉了这一问题。
本文基于 Linux-2.4.16 内核版本 由于计算机的物理内存是有限的, 而进程对内存的使用是不确定的, 所以物理内存总有用完的可能性. 那么当系统的物理内存不足时, Linux内核使用什么方案来
RCU , 英文全称是 " Read-Copy-Update “ , 对应的中文名称是 ” 读取-拷贝-更新 “ , 这是 Linux 内核中的 ” 同步机制 " ;
晓查 发自 凹非寺 量子位 | 公众号 QbitAI 还在使用89年版C语言的Linux内核,现在终于要做出改变了。 今天,Linux开源社区宣布,未来会把内核C语言版本升级到C11,预计5.18版之后生效,也就是今年5月。 这个决定很突然,从发起问题到官方声明,不过才一个星期,要知道说服固执的Linux之父 Linus Torvalds可不是件容易的事。 事情的原因,说起来还有那么一点偶然的因素。 一个bug的连锁反应 问题的起源是来自上周的一次Linux社区讨论。 一位名叫Jakob Koschel的
在Linux 中,仅等待 CPU 时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状 态标志位为 TASK_RUNNING。一旦一个运行中的进程时间片用完, Linux 内核的调度器会剥夺这个进程对 CPU 的控制权,并且从运行队列中选择一个合适的进程投入运行。
Linux 内核源码 linux-5.6.18\kernel\sched\sched.h 中 , 定义的 struct sched_class 调度类结构体 , 就是 " 调度器 " 对应的类 ;
大家好,我是程栩,一个专注于性能的大厂程序员,分享包括但不限于计算机体系结构、性能优化、云原生的知识。
Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表。四级页表分别为:
对 Linux 稍有了解的人都知道,Linux 会将物理的随机读取内存(Random Access Memory、RAM)按页分割成 4KB 大小的内存块,而今天要介绍的 Swapping 机制就与内存息息相关,它是操作系统将物理内存页中的内容拷贝到硬盘上交换空间(Swap Space)以释放内存的过程,物理内存和硬盘上的交换分区组成了操作系统上可用的虚拟内存,而这些交换空间都是系统管理员预先配置好的[^1]。
Linux定时器分为低精度定时器和高精度定时器两种类型,内核对其均有实现。本文讨论的是我们在应用程序开发中比较常见的低精度定时器。作为常用的基础组件,定时器常用的几种实现方法包括:基于排序链表实现、基于小根堆实现、基于红黑树实现、基于时间轮实现。本文讲解的是时间复杂度最优,也是linux内核采用的基于时间轮的实现方式。
在Linux内核中,对于数据的管理,提供了2种类型的双向链表:一种是使用list_head结构体构成的环形双向链表;另一种是使用hlist_head和hlist_node2个结构体构成的具有表头的链型双向链表。
1 Linux 进程的睡眠和唤醒 在 Linux 中,仅等待 CPU 时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状 态标志位为 TASK_RUNNING。一旦一个运行中的进程时间片用完, Linux 内核的调度器会剥夺这个进程对 CPU 的控制权,并且从运行队列中选择一个合适的进程投入运行。 当然,一个进程也可以主动释放 CPU 的控制权。函数 schedule() 是一个调度函数,它可以被一个进程主动调用,从而调度其它进程占用 CPU。一旦这个主动放弃 CPU 的进程被重新调度
在上期文章中,已经给大家分享过offsetof()和container_of两个宏函数,这两个宏函数在Linux内核链表里面有大量的应用,对于我们平时工作写代码有很大的帮助。下面是Linux内核链表的内容分享。
在上一篇博客 【Linux 内核 内存管理】RCU 机制 ① ( RCU 机制简介 | RCU 机制的优势与弊端 | RCU 机制的链表应用场景 ) 中 , 分析了 RCU 机制的优势与弊端 ;
大家都知道Linux内核task调度器经历了O(n),O(1)调度器,目前是CFS,期间也出现了几个优秀的候选调度器,但最终都没能并入内核,我们只能从一些零散的patch和文章中知道它们的存在。
很多时候,我们要监控系统状态,即监控系统cpu负载、进程状态等情况,如果我们在 Linux 应用层,我们有很多方式,命令行中常用 top、ps 命令,代码中,我们可以使用 popen 函数去执行一个 top 命令,获取返回值。或者我们直接读写 /proc下面的文件,都可以达到目的。
作者简介 赵晨雨:西安邮电大学2018级陈莉君教授研究生,天真无邪小白一枚,已经爱上linux内核而不能自拔,正在成长为内核狂热爱好者? 跟随陈老师学习linux内核两个月了,对linux内核
作为世界最牛逼黑客之一,Linus Torvalds的特立独行就跟他的软件Linux一样受人瞩目,那你想知道Linux的创始人Linus Torvalds是怎么写C语言程序的吗?一起来感受下。
关于空闲空间的管理,前面提到的是已被占用的数据块的组织和管理。接下来要解决的问题是,当我要保存一个数据块时,应该将其放在硬盘的哪个位置。难道需要扫描所有的块,随意找个空的地方放吗?
操作系统为进程维护了打开的文件列表,每个进程维护了一个file数组字段(struct file * fd[NR_OPEN]);每个元素指向一个file结构体。每个file结构体有一个字段指向inode结构体,inode管理这个文件的内容、权限等信息。这里分析的是file结构体的管理。
伙伴系统是常用的内存分配算法,linux内核的底层页分配算法就是伙伴系统,伙伴系统的优点就是分配和回收速度快,减少外部碎片。算法描述:
LRU是常见的缓存淘汰策略,用于分布式系统的缓存、页表置换等场景。然而,经典的哈希链表实现事实上并不是很好的实现策略。
某机器上网络出现时断时续的问题,网络的同事发现ovs进程的CPU消耗很高,硬件offload的规则下发卡住的问题。即通过netlink向内核发送消息卡住。
本文简介本文介绍Linux RCU的基本概念。这不是一篇单独的文章,这是《谢宝友:深入理解Linux RCU》系列的第3篇,前序文章:谢宝友: 深入理解Linux RCU之一——从硬件说起= 谢宝友:
熟悉STL的同学始终都绕不过的一个地方,尤其是面试时也会被问及容器的知识点:vector。
在上一节, 我们介绍了Linux内核怎么管理系统中的物理内存. 但有时候内核需要分配一些物理内存地址也连续的内存页, 所以Linux使用了 伙伴系统分配算法 来管理系统中的物理内存页.
[121] 编写UNIX/Linux命令以列出目录中所有文件的名称(例如/usr/bin/dir/)(及其子目录),文件应该包含不区分大小写的“I am preparing for Interview”。
注:本分类下文章大多整理自《深入分析linux内核源代码》一书,另有参考其他一些资料如《linux内核完全剖析》、《linux c 编程一站式学习》等,只是为了更好地理清系统编程和网络编程中的一些概念
对于一个复杂的软件系统,定时器的对任务的管理和调度至关重要,通常定时器的管理已成为一个复杂系统的重要基础设施。
当我们要学习一个新知识点时,比较好的过程是先理解出现这个技术点的 背景原因,同期其他解决方案,新技术点解决了什么问题以及它存在哪些不足和改进之处,这样整个学习过程是 闭环 的,个人觉得这是个很好的学习思路。
操作系统将内存按照页的进行管理,在需要的时候才把进程相应的部分调入内存。当产生缺页中断时,需要选择一个页面写入。如果要换出的页面在内存中被修改过,变成了“脏”页面,那就需要先写会到磁盘。页面置换算法,就是要选出最合适的一个页面,使得置换的效率最高。页面置换算法有很多,简单介绍几个,重点介绍比较重要的LRU及其实现算法。
进互联网公司操作系统和网络库是基础技能,面试过不去的看,这里基于嵌入式操作系统分几章来总结一下任务调度、内存分配和网络协议栈的基础原理和代码实现。
节点既包含了后续节点的指针,也包含了前趋节点的指针,而且一般都设计成循环,这样就可以非常方便地从链表的任意一个位置开始遍历整个链表。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/huangweiqing80/article/details/83088465
领取专属 10元无门槛券
手把手带您无忧上云