一、搭建一个简单的交易策略 1、策略 先看一个非常简单的交易策略: 为了让这个策略能让计算机执行,首先,要使策略符合“初始化+周期循环”框架,像这样: 2、什么是“初始化+周期循环”框架?...为了将投资灵感高效地转化成计算机可执行的量化策略,必须基于一种模式来写,框架就是指这种模式。而此框架包含两个部分即初始化与周期循环: 初始化即指策略最开始运行前要做的事。比如,准备好要交易的股票。...3、如何把策略变成计算机可执行的程序? 通过编程将策略写成计算机可识别的代码,具体说,我们这里是用python这门编程语言。...另外可以用聚宽的向导式策略生成器,这种方法是不需编程的,但灵活性上难免是远不如写代码的。 4、如何将策略写成代码?...-策略列表,点击新建策略 2.进入策略编辑页,左侧就是策略代码编辑区域,初始会默认给你提供代码模板,全删除后写入我们的代码就好了。
Dual Thrust策略起源于20世纪80年代,由美国著名交易员和金融作家Larry Williams首次提出。这一策略的核心思想是通过捕捉市场中的短期波动来实现盈利。...策略原理Dual Thrust策略的核心思想是利用市场的波动性来捕捉趋势。Dual Thrust策略主要依赖于两个关键参数:Range和ATR(平均真实波动范围)。...该策略通过计算上轨和下轨两个阈值,来判断市场的多空方向。当价格突破上轨时,策略认为市场处于多头趋势,进行做多操作;当价格跌破下轨时,策略认为市场处于空头趋势,进行做空操作。...在聚宽平台运行Python代码选股方式在Dual Thrust策略中,选股方式相对简单。选择一个特定的合约作为交易标的,例如螺纹钢(SHFE.RB)。在策略初始化时,订阅该合约,并设置相关参数。<
python实现量化交易策略 1 前言 相信大家都听说过股票,很羡慕那些炒股大佬,觉得量化投资非常高深,本文教大家用python实现简单的量化交易策略。...基于这种思想,我们用相关性来构建策略。...到这里就构建了我们的策略。 3 买股方案 前文根据2020年1月1日到2020年12月31日的数据构建策略,用于2021年1月1日到2021年3月31日交易。...4 评估策略 上文我们得到了买股方案,最后需要进行回测,我们用收益率,夏普率,最大回撤等指标来评估策略的优劣性,收益率和夏普率越大越好,最大回撤越小越好。...一个好的策略是需要不断调参不断测试的。本文的策略虽然在2020年第一季度中收益率为5.858%,但没有考虑交易费用,实际收益大约4%。再次强调,本文仅供交流学习参考,不构成任何投资建议。
本文转载自:掘金量化 量化分析经典策略总结 菲阿里四价(期货) 原理 菲阿里四价同 R Breaker 一样,也是一种 日内 策略交易,适合短线投资者。...策略实现 第一步:制定一个选股策略,构建投资组合,使其同时拥有 alpha 和 beta 收益。...基于主成分回归模型的行业轮动策略及其业绩评价[J]. 数学的实践与认识, 2016, 46(019):82-92.) 策略思路 策略示例采用第一种策略构建方法,利用行业动量设计策略。...目前,机器学习已在人脸识别、智能投顾、自然语言处理等方面得到广泛应用。 机器学习可以分为两类,一类是无监督学习,另一类是监督学习。监督学习是指按照已有的标记进行学习,即已经有准确的分类信息。...backtest_commission_ratio=0.0001, backtest_slippage_ratio=0.0001) 小市值(股票) 原理 因子投资 提到量化策略
QUANTAXIS量化金融策略框架,是一个面向中小型策略团队的量化分析解决方案,是一个从数据爬取、清洗存储、分析回测、可视化、交易复盘的本地一站式解决方案。...quantaxis 采用前后端分离的模式开发,所以对于后端而言 是一个可以快速替换/语言随意的部分.只需要按照规则设置好REST的url即可 2.
此外,使用一条、两条、三条甚至更多条均线的交易策略,也会有很不一样的结果。因此,本文使用R软件对传统的均线交叉策略进行了改进,测试了不同的止损策略,尽可能实现了收益的最大化。...策略说明 买入条件:多头排列时 ma30<ma5,ma30<ma10,ma30<ma20,close>open,close>ma5 本策略用R软件对比了不同的清仓信号、止损信号组合的回测效果。...对比组合的策略收益,可以看到使用跌幅止损的策略具有最高的策略收益,且最大回撤控制得也比较好;使用概率止损的策略虽然收益较少,但波动率较低,且最大回撤减少了近一半;
止损、盈利目标和持有期是引入路径依赖的交易策略构建的例子。 ...滑点--我们回顾一下什么是滑点,我们探讨在交易策略中考虑滑点的问题 - 使用价差的策略,它是两个价格时间序列的线性组合 简单的策略:模仿策略- 如果收盘价高于开盘价,则在第二天买入- 否则,在第二天卖出我们希望这个策略在什么时候能发挥作用...(plot1,plot2,ncol=2)dev.off()复制代码- 从样本内结果中挑选参数并不总是容易的 - 数据集的漂移可能导致良好的参数组合在样本内和样本外期间有所不同 最受欢迎的见解1.R语言对...S&P500股票指数进行ARIMA + GARCH交易策略2.R语言改进的股票配对交易策略分析SPY—TLT组合和中国股市投资组合3.R语言时间序列:ARIMA GARCH模型的交易策略在外汇市场预测应用...4.TMA三均线期指高频交易策略的R语言实现5.r语言多均线量化策略回测比较6.用R语言实现神经网络预测股票实例7.r语言预测波动率的实现:ARCH模型与HAR-RV模型8.R语言如何做马尔科夫转换模型
本文将详细介绍日内网格交易策略的原理,并结合Python代码示例,展示如何在掘金平台上实现这一策略。...策略原理日内网格交易策略的核心思想是在一天的交易时间内,通过设置多个买卖点(即网格),在价格达到这些点时自动执行交易。这种策略的优势在于能够充分利用市场的波动性,通过频繁的买卖操作来获取收益。...这种策略适用于波动性较大的市场环境,因为只有当价格波动足够大时,网格交易才能捕捉到足够的交易机会。...在平台运行Python代码在掘金平台上实现日内网格交易策略,主要分为三个核心步骤:选股、择时和策略交易。...以下是这三个步骤的Python代码实现:选股选股是策略的第一步,需要选择适合网格交易的股票或可转债。
相信很多买过股票的同学应该都听过PEG估值选股法,这个策略是美国的传奇基金经理彼得林奇极力推广的。...毕竟A股这种只能靠做多赚钱的熊市里,再好的策略都是无效的。...为了避免给某个量化平台做广告的嫌疑,我们这里给出jointquant和uqer两家平台上的回测程序和结果。...jointquant:(注:该程序为joinquant官网上量化课堂中的示例程序) import pandas as pd ''' ==================================...freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测 refresh_rate = 15
首先,我们将简要概述SVM,然后根据算法发现的模式来构建和测试策略。 支持向量机 支持向量机基于其发现非线性模式的能力,是较流行且功能强大的机器学习算法之一。.../%d/%y %H:%M', index.class = c("POSIXlt", "POSIXt")) 建立模型 使用R建立我们的模型,分析它能够找到的模式,然后进行测试以查看这些模式在实际的交易策略中是否成立...创建指标并训练SVM: #***************************************************************** # 代码策略 #************..., 50) # 删除缺失 DataSet = DataSet[-(1:49),] #将数据分为60%的训练集以构建模型,20%的测试集以测试我们发现的模型,以及20%的验证集将我们的策略应用于新的数据...使用支持向量机(一种功能强大的机器学习算法),我们不仅能够了解RSI的传统知识在什么条件下成立,而且还能够创建可靠的交易策略。
不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。 量化交易,就是以数学模型替代人的主观判断来制定交易策略。...通常会借助计算机程序来进行策略的计算和验证,最终也常直接用程序根据策略设定的规则自动进行交易。 Python 由于开发方便,工具库丰富,尤其科学计算方面的支持很强大,所以目前在量化领域的使用很广泛。...市面上也出现了很多支持 Python 语言的量化平台。通过这些平台,你可以很方便地实现自己的交易策略,进行验证,甚至对接交易系统(由于政策原因,现在很多交易接口暂停开放)。...在交易策略方面,我是外行(虽然曾经也有证券从业资格)。所以本文只是介绍几个 Python 量化平台,以及一些最基本的使用方法。更多的功能、更强大的策略还有待各位自己去挖掘。...量化投资以及程序化交易是很有前途的行业,但在你想从事这行,甚至用它赚钱之前,请先深入了解它。 有兴趣的,去看下知乎上的这个问题: 学习量化交易如何入门?
量化策略可以简单分为三类,分别是Alpha策略、CTA策略以及高频交易策略 1.Alpha策略 Alpha策略包含不同类别: 按照研究内容来分,可分为基本面Alpha(或者叫财务Alpha)和量价Alpha...全对冲的叫做Alpha策略,不对冲的在市面上常被称作指数增强策略。二者所用模型一样,但后者少了期货的对冲。缺少对冲有坏处也有好处,坏处是这种策略的收益曲线是会有较大的回撤。...CTA策略的特点是收益风险比相对Alpha来说会较低。但是在行情较好的年份收益可能会很高,尤其是在早期。而且,无论是在编程还是策略上,CTA入门的难度相对来说都是最低的。...顺便说一句,这三个类型的量化策略按入门难度来说,最难的肯定是高频交易,其次是Alpha策略,最容易入门的则是CTA。当然,这并不是说高频交易就是整体来讲最难的策略类型。...所以个人认为Alpha策略的顶尖团队是市场上最精尖的一批人 继续说CTA策略,CTA的核心在我看来在于分散投资 具体来说是以下三个维度:多品种、多策略以及多周期。
①)网络爬虫定义,又称Web Spider,网页蜘蛛,按照一定的规则,自动抓取网站信息的程序或者脚本。
机器学习被评为人工智能中最能体现人类智慧的技术,机器学习在量化金融中的运用我们通过下例介绍,以便大家有个直观印象。...StockRanker算法是专为选股量化而设计,核心算法主要是排序学习和梯度提升树 StockRanker的图示 StockRanker的特点 选股:股票市场和图像识别、机器翻译等机器学习场景有很大不同...如何使用StockRanker算法开发量化策略 在BigQuant人工智能量化平台上,直接拖曳不会编程就能开发AI量化策略。
在Andrew Ng的>课程中,多次强调了使用向量化的形式进行编码,在深度学习课程中,甚至给出了编程原则:尽可能避免使用for循环而采用向量化形式。...该课程采用的是matlab/octave语言,所擅长的方向正是数值计算,语言本身内置了对矩阵/向量的支持,比如: a = log(x) 如果变量x是一个数值,那么a也会得到一个数值结果,如果x是一个矩阵...但是对于机器学习领域广为使用的python语言而言,并没有内置这样的功能,毕竟python是一门通用语言。好消息是,借助一些第三方库,我们也可以很容易的处理向量数值运算。...所以采用向量化编程,而不是普通的Python循环,最大的优点是提升性能。另外相比Python循环嵌套,采用向量化的代码显得更加简洁。...更多关于numpy向量化编程的指导,可以参考这本开源的在线书籍:From Python to Numpy )
p=29653 最近我们被客户要求撰写关于量化交易的研究报告,包括一些图形和统计输出。 我们将利用每日数据制定简单的交易策略,将涵盖以下内容。 一个简单的介绍性交易。...滑点--我们回顾一下什么是滑点,我们探讨在交易策略中考虑滑点的问题 - 使用价差的策略,它是两个价格时间序列的线性组合 简单的策略:模仿 策略 如果收盘价高于开盘价,则在第二天买入 否则,在第二天卖出...】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 01 02 03 04 移动标准差和布林带 类似于移动平均线,我们现在引入移动(滚动)标准差 我们使用移动平均线和移动标准差来定义布林带...grid.arrange(plot1,plot2,ncol=2) dev.off() 从样本内结果中挑选参数并不总是容易的 数据集的漂移可能导致良好的参数组合在样本内和样本外期间有所不同 ---- 本文选自《R语言金融市场量化交易...:布林带、价差策略、RSI交易策略,回测COMP 226》。
今天,我们先讲述几个零碎的知识点,然后正式编写一个SSA策略,包括indicator的编写和策略的回测。...我们看一下上次我们的策略是怎么来的。...2.SSA 接下来,开始进入完整的一个策略的研究,同时学习编写一个indicator。 SSA就是奇异谱分析。 ...我们在上一次将strategy的生命周期的时候讲到过,比如一个5day的均线,那么开始五天是没有indicator的,这个时候,策略会调用prenext方法。
在现代金融市场中,量化交易已经成为投资领域中一种越来越普遍和重要的交易方式。然而,对于量化交易策略来说,延迟问题是一个不可忽视的挑战。...本篇博客将深入探讨在使用Python进行量化交易时,如何有效地降低延迟,提高交易系统的执行效率。 1....from functools import lru_cache # 本地化计算和缓存 @lru_cache(maxsize=None) def calculate_strategy(): # 计算策略... return result 优化量化交易系统需要全面考虑硬件、网络、数据处理、算法等多个方面,以达到最佳的交易执行效果。
本文将详细介绍可转债交易的注意事项,并探讨一些适用于可转债的高频量化交易策略。可转债交易注意事项了解可转债的基本概念在进行可转债交易之前,投资者首先需要了解其基本概念和特性。...投资者应密切关注相关法规和政策的变化,以便及时调整投资策略。高频量化交易策略高频量化交易策略是指利用先进的数学模型和计算机技术,在极短的时间内进行大量交易以获取微小利润的策略。...在可转债市场中,以下是一些可能适用的高频量化交易策略:市场做市策略市场做市策略是指通过提供买卖双边报价,从中赚取买卖价差(即价差)的策略。...同时,随着量化交易技术的发展,高频量化交易策略在可转债市场中的应用也越来越广泛,为投资者提供了新的交易机会。...无论是传统的投资方法还是现代的量化交易策略,投资者都应充分了解其原理和风险,并结合自身的投资目标和风险承受能力进行决策。在实际操作中,投资者还应不断学习和实践,以提高自身的投资技能和风险管理能力。
推出【Matlab量化投资系列】 机器学习 所谓机器学习,其实就是根据样本数据寻找规律,然后再利用这些规律来预测未来的数据(结果)。...那下面我们就开始编写策略啦~ 小编所使用的数据、策略回测、交易等等都是来自于国泰安量化终端Quantrader。而小编使用的策略编写语言是Matlab,实现策略不要太简单。...策略流程图如下: 策略参数配置 根据之前提到的订阅的交易代码和数据,使用Quantrader可以直接配置如下: 策略主程序 数据准备好了之后,我们就可以开始码代码啦。...1、训练分类器: 2、预测: 3、交易下单: 策略回测 策略写完了当然要用历史数据回测看看绩效。同样的,使用Quantrader,完成回测。...从过去3年半的绩效来看,这个策略年化收益约50%左右,夏普达到了2。 ?
领取专属 10元无门槛券
手把手带您无忧上云