首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

重命名未堆叠数据透视表中的pandas列值

可以使用rename()函数来实现。该函数可以接受一个字典作为参数,字典的键表示需要重命名的列名,字典的值表示重命名后的新列名。

下面是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建一个未堆叠的数据透视表
data = {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'],
        'B': ['one', 'one', 'two', 'two', 'one', 'one', 'two', 'two', 'one', 'one', 'two'],
        'C': ['small', 'large', 'small', 'large', 'small', 'large', 'small', 'large', 'small', 'large', 'small'],
        'D': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
        'E': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]}
df = pd.DataFrame(data)

# 创建数据透视表
pivot_table = df.pivot_table(values='D', index=['A', 'B'], columns='C')

# 重命名列值
pivot_table = pivot_table.rename(columns={'large': 'L', 'small': 'S'})

print(pivot_table)

运行以上代码,输出结果如下:

代码语言:txt
复制
C        L  S
A   B        
bar one  6  5
    two  8  7
foo one  2  1
    two  4  3

在这个例子中,我们创建了一个未堆叠的数据透视表pivot_table,然后使用rename()函数将列值large重命名为L,将列值small重命名为S。最后打印出重命名后的数据透视表。

关于pandas的更多信息和使用方法,可以参考腾讯云的相关产品和文档:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

​一文看懂 Pandas 透视

一文看懂 Pandas 透视 透视在一种功能很强大图表,用户可以从中读取到很多信息。利用excel可以生成简单透视。本文中讲解是如何在pandas制作透视。...读取数据 注:本文原始数据文件,可以在早起Python后台回复 “透视”获取。...设置数据 使用 category数据类型,按照想要查看方式设置顺序 不严格要求,但是设置了顺序有助于分析,一直保持所想要顺序 df["Status"] = df["Status"].astype(...4.使用columns参数,指定生成属性 ? 5. 解决数据NaN,使用fill_value参数 ? 6. 查看总数据,使用margins=True ? 7....不同属性字段执行不同函数 ? ? 8. Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据 查询指定字段信息 ?

1.9K30

一文看懂pandas透视

一文看懂pandas透视 读取数据 import pandas as pd import numpy as np df = pd.read_excel("....设置数据 使用category数据类型,按照想要查看方式设置顺序 不严格要求,但是设置了顺序有助于分析,一直保持所想要顺序 df["Status"] = df["Status"].astype...") df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True) # 设置顺序 建立透视...4.使用columns参数,指定生成属性 ? 解决数据NaN,使用fill_value参数 ? 查看总数据,使用margins=True ? 不同属性字段执行不同函数 ? ?...Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据 查询指定字段信息 ? 图形备忘录 ?

81730
  • Pandas如何查找某中最大

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    ​【Python基础】一文看懂 Pandas 透视

    一文看懂 Pandas 透视 透视在一种功能很强大图表,用户可以从中读取到很多信息。利用excel可以生成简单透视。本文中讲解是如何在pandas制作透视。...读取数据 注:本文原始数据文件,可以在公号「Python数据之道」后台回复 “透视”获取。...df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True) # 设置顺序 建立透视...4.使用columns参数,指定生成属性 ? 5. 解决数据NaN,使用fill_value参数 ? 6. 查看总数据,使用margins=True ? 7....不同属性字段执行不同函数 ? ? 8. Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据 查询指定字段信息 ?

    1.7K20

    用过Excel,就会获取pandas数据框架、行和

    在Excel,我们可以看到行、和单元格,可以使用“=”号或在公式引用这些。...在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用行和交集。...接着,.loc[[1,3]]返回该数据框架第1行和第4行。 .loc[]方法 正如前面所述,.loc语法是df.loc[行,],需要提醒行(索引)和可能是什么?

    19.1K60

    直观地解释和可视化每个复杂DataFrame操作

    操作数据帧可能很快会成为一项复杂任务,因此在Pandas八种技术均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它技巧。 Pivot 透视将创建一个新透视”,该透视数据现有投影为新元素,包括索引,。...Melt Melt可以被认为是“不可透视”,因为它将基于矩阵数据(具有二维)转换为基于列表数据(列表示,行表示唯一数据点),而枢轴则相反。...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应新DataFrame。在上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...请注意,concat是pandas函数,而不是DataFrame之一。因此,它接受要连接DataFrame列表。 如果一个DataFrame另一包含,默认情况下将包含该,缺失列为NaN。

    13.3K20

    最全面的Pandas教程!没有之一!

    因为我们没有指定堆叠方向,Pandas 默认按行方向堆叠,把每个索引按顺序叠加。 如果你想要按方向堆叠,那你需要传入 axis=1 参数: ? 注意,这里出现了一大堆空。...查找空 假如你有一个很大数据集,你可以用 Pandas .isnull() 方法,方便快捷地发现: ?...数据透视 在使用 Excel 时候,你或许已经试过数据透视功能了。数据透视是一种汇总统计,它展现了原表格数据汇总统计结果。...你可以在 Pandas 官方文档 中找到更多数据透视详细用法和例子。 于是,我们按上面的语法,给这个动物统计创建一个数据透视: ? 或者也可以直接调用 df 对象方法: ?...在上面的例子数据透视某些位置是 NaN 空,因为在原数据里没有对应条件下数据

    25.9K64

    Pandas库常用方法、函数集合

    join concat:合并多个dataframe,类似sqlunion pivot:按照指定行列重塑表格 pivot_table:数据透视,类似excel透视 cut:将一组数据分割成离散区间...,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉,用于计算两个或多个因子之间频率 join:通过索引合并两个dataframe stack: 将数据...“堆叠”为一个层次化Series unstack: 将层次化Series转换回数据框形式 append: 将一行或多行数据追加到数据末尾 分组 聚合 转换 过滤 groupby:按照指定或多个数据进行分组...、cumprod:计算分组累积和、最小、最大、累积乘积 数据清洗 dropna: 丢弃包含缺失行或 fillna: 填充或替换缺失 interpolate: 对缺失进行插 duplicated...: 替换字符串特定字符 astype: 将一数据类型转换为指定类型 sort_values: 对数据框按照指定进行排序 rename: 对或行进行重命名 drop: 删除指定或行 数据可视化

    28710

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。...实际上我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

    7.2K20

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行 (2)读取第二行 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二 # 读取第二全部 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应 data3...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    掌握这些 NumPy & Pandas 方法,快速提升数据处理效率!

    Pandas 是基于NumPy 一种工具,该工具是为解决数据分析任务而创建pandas 纳入了大量库和一些标准数据模型,提供了高效地操作大型数据集所需工具。...pandas提供了大量能使我们快速便捷地处理数据函数和方法。你很快就会发现,它是使python成为强大而高效数据分析环境重要因素之一。...Pandas Pandas库建立在NumPy上,并为Python编程语言提供了易于使用数据结构和数据分析工具。...数据透视Pivot_table # 将行展开成 >>> df4 = pd.pivot_table(df2, values='Value',...col_level : 如果是MultiIndex,则使用此级别。 宽数据--->>长数据,有点像用excel做透视跟逆透视过程。

    5K20

    掌握这些 NumPy & Pandas 方法,快速提升数据处理效率

    Pandas 是基于NumPy 一种工具,该工具是为解决数据分析任务而创建pandas 纳入了大量库和一些标准数据模型,提供了高效地操作大型数据集所需工具。...pandas提供了大量能使我们快速便捷地处理数据函数和方法。你很快就会发现,它是使python成为强大而高效数据分析环境重要因素之一。...Pandas Pandas库建立在NumPy上,并为Python编程语言提供了易于使用数据结构和数据分析工具。...数据透视Pivot_table # 将行展开成 >>> df4 = pd.pivot_table(df2, values='Value',...col_level : 如果是MultiIndex,则使用此级别。 宽数据--->>长数据,有点像用excel做透视跟逆透视过程。

    3.7K20

    Excel数据对比常用方法

    Excel数据差异对比,方法非常多,比如简单直接用等式处理,到使用Excel2016新功能Power Query(Excel2010或Excel2013可到微软官方下载相应插件...vlookup函数除了适用于两对比,还可以用于数据对比,如下图所示: 三、使用数据透视进行数据对比 对于大规模数据对比来说,数据透视法非常好用,具体使用方法也很简单,即将2数据合并后...,构造成明细,然后进行数据透视——这种方法适用于多表数据对比,甚至可以在一些数据不太规范场合下,减少数据对比工作量,如下例子: 数据不规范统一,用数据透视递进巧比对 比如很多公司盘点数据对比问题...这种数据汇总后就有各种问题,很难用公式去匹配。于是可以考虑用数据透视,先对大类,看看哪些大类是对不上,然后再针对有差异大类对明细,缩小对照范围。比如把2个数据透视都放到一张表里看看。...1、将需要对比2个数据加载到Power Query 2、以完全外部方式合并查询 3、展开合并数据 4、添加差异比对 5、按需要筛选去掉无差异部分 6、按需要调整相应就可以将差异结果返回

    14.5K20

    Pandas图鉴(三):DataFrames

    通过MultiIndex进行堆叠 如果行和标签都重合,concat可以做一个相当于垂直堆叠MultiIndex(像NumPydstack): 如果行和/或部分重叠,Pandas将相应地对齐名称...注意:要小心,如果第二个有重复索引,你会在结果中出现重复索引,即使左索引是唯一 有时,连接DataFrame有相同名称。...预定义函数(Pandas或NumPy函数对象,或其名称为字符串)。 一个从不同角度看数据有用工具--通常与分组一起使用--是透视。...当有两个以上参数时,情况会变得更加复杂。 自然,应该有一个简单方法来在这些格式之间进行转换。而Pandas为它提供了一个简单方便解决方案:透视。...为了方便,pivot_table可以计算小计和大计: 一旦创建,数据透视就变成了一个普通DataFrame,所以它可以使用前面描述标准方法进行查询: 当与MultiIndex一起使用时,数据透视特别方便

    40020

    Pandas统计分析-分组->透视->可视化

    数据 分组 聚合 运算 聚合 ‘ 飞行综合 flights = pd.read_csv('data/flights.csv') 1 显示部分数据 2 按照AIRLINE分组, 使用agg方法, 传入要聚合和聚合函数...flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head() 3 或者要选取使用索引, 聚合函数作为字符串传入agg flights.groupby...# 对于每条航线, 找到总航班数, 取消数量和比例,飞行时间平均时间和方差 group_cols = ['ORG_AIR', 'DEST_AIR'] agg_dict = { 'CANCELLED...删除这三缺失 数据透视 数据透视 交叉 综合练习 读取显示前8 数据做索引,后面都是数值 Pandas可视化 线性累加和直方图 柱状图 bar条状 叠...barth水平堆叠 直方图 密度图 频度出现次数 alpha是透明度 堆叠 bins堆个个数 散点图 scatter散点图 s 控制大小 其他图

    1.5K11
    领券