首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy之:ndarray中的函数

    简介 在NumPy中,多维数组除了基本的算数运算之外,还内置了一些非常有用的函数,可以加快我们的科学计算的速度。...矢量化数组运算 如果要进行数组之间的运算,常用的方法就是进行循环遍历,但是这样的效率会比较低。所以Numpy提供了数组之间的数据处理的方法。...条件逻辑表达式 我们可以在构建数组的时候使用条件逻辑表达式: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5]) yarr = np.array([2.1, 2.2,...我们可以使用where语句: result = np.where(cond, xarr, yarr) result array([1.1, 2.2, 1.3, 1.4, 2.5]) 我们还可以根据where的条件来修改数组的值...]]) arr.cumprod(axis=1) array([[ 0, 0, 0], [ 3, 12, 60], [ 6, 42, 336]]) 布尔数组

    1.5K40

    NumPy之:ndarray中的函数

    简介 在NumPy中,多维数组除了基本的算数运算之外,还内置了一些非常有用的函数,可以加快我们的科学计算的速度。...矢量化数组运算 如果要进行数组之间的运算,常用的方法就是进行循环遍历,但是这样的效率会比较低。所以Numpy提供了数组之间的数据处理的方法。...条件逻辑表达式 我们可以在构建数组的时候使用条件逻辑表达式: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5]) yarr = np.array([2.1, 2.2,...我们可以使用where语句: result = np.where(cond, xarr, yarr) result array([1.1, 2.2, 1.3, 1.4, 2.5]) 我们还可以根据where的条件来修改数组的值...15]]) arr.cumprod(axis=1) array([[ 0, 0, 0], [ 3, 12, 60], [ 6, 42, 336]]) 布尔数组

    1.3K10

    NumPy之:ndarray中的函数

    简介 在NumPy中,多维数组除了基本的算数运算之外,还内置了一些非常有用的函数,可以加快我们的科学计算的速度。...矢量化数组运算 如果要进行数组之间的运算,常用的方法就是进行循环遍历,但是这样的效率会比较低。所以Numpy提供了数组之间的数据处理的方法。...条件逻辑表达式 我们可以在构建数组的时候使用条件逻辑表达式: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5]) yarr = np.array([2.1, 2.2,...我们可以使用where语句: result = np.where(cond, xarr, yarr) result array([1.1, 2.2, 1.3, 1.4, 2.5]) 我们还可以根据where的条件来修改数组的值...15]]) arr.cumprod(axis=1) array([[ 0, 0, 0], [ 3, 12, 60], [ 6, 42, 336]]) 布尔数组

    1.6K20

    Numpy的广播功能

    数组的计算:广播广播的介绍广播的规则广播的实际应用比较,掩码和布尔逻辑比较操作操作布尔数组将布尔数组作为掩码 《Python数据科学手册》读书笔记 数组的计算:广播 另外一种向量化操作的方法是利用 NumPy...广播的介绍 对于同样大小的数组, 二进制操作是对相应元素逐个计算: import numpy as np a = np.array([, , ]) b = np.array([, , ]) a +...NumPy 广播功能的好处是, 这种对值的重复实际上并没有发生, 但是这是一种很好用的理解广播的模型。...NumPy 提供了一些简明的模式来操作这些布尔结果。 操作布尔数组 给定一个布尔数组, 你可以实现很多有用的操作。..., 即掩码操作: # 将小于5的值从数组中筛选出来 x[x < ] array([, , , , , ]) and和or对整个对象执行单个布尔运算,而&和|对一个对象的内容执行多个布尔运算,对于Numpy

    1.8K20

    NumPy的广播机制

    而在NumPy中,通过广播可以完成这项操作。...广播(Boardcasting)是NumPy中用于在不同大小的阵列(包括标量与向量,标量与二维数组,向量与二维数组,二维数组与高维数组等)之间进行逐元素运算(例如,逐元素 加法,减法,乘法,赋值等)的一组规则...尽管该技术是为NumPy开发的,但它在其他数值计算库中也得到了更广泛的应用,例如深度学习框架TensorFlow和Pytorch。...NumPy在广播的时候实际上并没有复制较小的数组; 相反,它使存储器和计算上有效地使用存储器中的现有结构,实际上实现了相同的结果。...import numpy as npA = np.zeros((2,4))B = np.zeros((3,4))C = A*B报错如下: 在这里插入图片描述 这种是逐元素相乘,会运用广播机制,只不过,此时当前两个元素的维度不能广播

    2K40

    Python数据处理(2)-NumPy的ndarray

    NumPy是Python中众多科学软件包的基础。它提供了一个特殊的数据类型ndarray,其在向量计算上做了优化。这个对象是科学数值计算中大多数算法的核心。...下面,我们将介绍ndarray的一些基本操作。 1.创建ndarray对象 创建多维数组最简单的方法就是使用np.array函数,它接受序列型的对象(包括列表和元组)以及嵌套序列。...np.arange函数和内置的range类似,只是返回的是一个ndarray对象而不是列表。...4.索引和切片 和列表对象一样,ndarray提供了非常方便的索引和切片机制。...另外,通过布尔型索引设置值是一种经常使用的操作。布尔型数组中的元素是布尔值,大小和需要索引的数组相同,返回布尔值为True的位置的元素生成的ndarray副本。

    96850

    Broadcast: Numpy中的广播机制

    在numpy中,针对两个不同形状的数组进行对应项的加,减,乘,除运算时,会首先尝试采用一种称之为广播的机制,将数组调整为统一的形状,然后再进行运算。...先来看一个最基本的广播的例子 >>> import numpy as np >>> a = np.array([1, 2, 3]) >>> b = 2 >>> a * b array([2, 4, 6]...) 上述代码进行矩阵加法运算,numpy在处理时,首先将数组b延伸成为和数组a长度相同的一个数组,示意如下 ?...数组的广播是有条件约束的,并不是任意两个不同形状的数组都可以调整成同一形状,其操作逻辑如下 第一步,判断输出结果的数组尺寸,即shape属性,取输入数组的每个轴的最大值 第二步,将shape属性与输出数组不一致的话输入数组进行广播...明确输出结果为4行5列的矩阵之后,将输入的数组a和b通过广播机制扩展为4行5列的数组。

    95320

    NumPy和Pandas中的广播

    Numpy中的广播 广播(Broadcast)是 numpy 对不同维度(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。 “维度”指的是特征或数据列。...的广播机制,Numpy会尝试将数组广播到另一个操作数。...,如果在某一个axis下,一个数据宽度为1,另一个数据宽度不为1,那么numpy就可以进行广播;但是一旦出现了在某个axis下两个数据宽度不相等,并且两者全不为1的状况,就无法广播,看看下面的例子:...Pandas中的广播 Pandas的操作也与Numpy类似,但是这里我们特别说明3个函数,Apply、Applymap和Aggregate,这三个函数经常用于按用户希望的方式转换变量或整个数据。...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。

    1.2K20

    【Python进阶】你真的明白NumPy中的ndarray吗?

    1 ndarray内存机制 我们知道NumPy最重要的一个特点是其N维数组对象ndarray。通常ndarray内部由以下内容组成。...我们通过下面的代码看下ndarray的内容: import numpy as np a = np.arange(1,25).reshape((2,2,2,3)) print(type(a)) print...2.2 高维数组转置 高维数组的转置一直是学习NumPy的一个难点,尽管在NumPy中只需要调用numpy.transpose就可以完成转置操作,但是你真的能分析清楚为什么结果是这样的吗?...相信你已经明白了其中的原理了,接下来留一个思考题,如下: ? 请问,从左到右怎么转置才能得到! 总结 本期我们介绍了ndarray的内存机制及高维数组的索引和转置。...NumPy的知识还有很多,上面介绍的只是NumPy中比较难理解的几个问题,若想更加系统的学习NumPy及知道上面思考题的分析过程和答案,请移步我们的知识星球!

    2K10

    Python之numpy的ndarray数组使用方法介绍

    NumPy介绍 NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括: (1)一个强大的N维数组对象ndrray; (2)比较成熟的(广播)函数库; (3)用于整合...C/C++和Fortran代码的工具包; (4)实用的线性代数、傅里叶变换和随机数生成函数 主要优点: 1.NumPy数组在数值运算方面的效率优于Python提供的list容器。...2.使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。...ndarray常用属性介绍 ndarray常用创建方法 这里只介绍最常用的方法,从python的list或者tuple中转化成ndarray,关于empty, emptylike, zeros, zeroslike...,想要了解详细的朋友可以参考官网文档: http://www.numpy.org/

    1K30

    Python 数据处理:NumPy库

    大多数提供科学计算的包都是用NumPy的数组作为构建基础。 NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。...= 'Bob') print(data[~(names == 'Bob')]) 选取这三个名字中的两个需要组合应用多个布尔条件,使用&(与)、|(或)之类的布尔算术运算符即可: import numpy...uniform 产生在[0,1)中均匀分布的样本值 ---- 8.高级数组操作 除花式索引、切片、布尔条件取子集等操作之外,数组的操作方式还有很多。...用广播的方式对行进行距平化处理会稍微麻烦一些。幸运的是,只要遵循一定的规则,低维度的值是可以被广播到数组的任意维度的(比如对二维数组各列减去行平均值)。...算术运算所遵循的广播原则同样也适用于通过索引机制设置数组值的操作。

    5.7K11

    最全的NumPy教程

    如前所述,ndarray对象中的元素遵循基于零的索引。有三种可用的索引方法类型:字段访问,基本切片和高级索引。 基本切片是 Python 中基本切片概念到 n 维的扩展。...NumPy - 高级索引 如果一个ndarray是非元组序列,数据类型为整数或布尔值的ndarray,或者至少一个元素为序列对象的元组,我们就能够用它来索引ndarray。高级索引始终返回数据的副本。...广播 术语广播是指 NumPy 在算术运算期间处理不同形状的数组的能力。...如果上述规则产生有效结果,并且满足以下条件之一,那么数组被称为可广播的。 数组拥有相同形状。 数组拥有相同的维数,每个维度拥有相同长度,或者长度为 1。...它们可以分为以下类型: 修改形状 reshape 不改变数据的条件下修改形状 numpy.reshape 这个函数在不改变数据的条件下修改形状,它接受如下参数: numpy.reshape(arr,

    4.2K10

    python数据分析和可视化——一篇文章足以(未完成)

    Numpy是一个运行速度非常快的数学库,主要用于数组计算,包括:强大的N维数组对象ndarray、广播功能函数、线性代数、傅里叶变换、随机数生成等功能。...Numpy广播机制 NumPy广播是NumPy对不同形状的数组进行数值计算的方式,NumPy广播要求对数组的算术运算通常在相应的元素上进行。...如果当运算中的2个数组的形状不同时,numpy将自动触发广播机制: 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都在前面加1补齐。 输出数组的形状是输入数组形状的各个维度上的最大值。...简单的说,当两个数组计算时,会比较它们的每个维度(若其中一个数组没有当前维度则忽略),如果满足以下三个条件则触发广播机制: 数组拥有相同形状。 当前维度的值相等。 当前维度的值有一个是1。...,这些布尔值表示哪些值是缺失值 notnull 返回一个含有布尔值的对象,这些布尔值表示哪些值不是缺失值 import pandas as pd import numpy as np data = pd.Series

    89310

    Python扩展库numpy中的布尔运算

    该问题的答案为[2, 2],要点在于列表对象的方法index()默认是返回指定元素在列表中首次出现的下标,元组和字符串的index()方法也具有相同的用法。...----------分割线--------- numpy支持一个数组与一个标量之间(或两个等长数组)之间的关系运算,得到一个新数组,新数组中每个元素为True或False,表示原数组中所有元素与该标量(...或原来两个数组中对应元素)进行关系运算的结果。...当使用仅含有True或False的numpy数组作为下标访问数组元素时,可以将False对应的元素过滤掉,只保留True对应的。...# 包含10个随机数的数组 >>> import numpy as np >>> x = np.random.rand(10) >>> x array([ 0.56707504, 0.07527513

    1.6K90
    领券