首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

通过拾取点最小化视差误差

是一种在计算机视觉领域中用于立体视觉重建的方法。立体视觉是指通过两个或多个视角的图像来获取三维场景信息的技术。

在立体视觉中,拾取点是指在两个或多个视角的图像中选择的一些特征点,例如角点、边缘点等。通过对这些拾取点进行匹配,可以计算出它们在不同视角下的视差,即在图像中的位置差异。视差可以用来推断物体的深度信息,从而实现三维重建。

拾取点最小化视差误差的目标是通过优化算法,选择最佳的拾取点,使得计算得到的视差误差最小化。视差误差是指通过计算得到的视差与实际视差之间的差异。通过最小化视差误差,可以提高立体视觉重建的准确性和稳定性。

应用场景:

  1. 三维重建:通过拾取点最小化视差误差的方法可以用于三维重建,例如建筑物、人脸等物体的三维模型重建。
  2. 虚拟现实与增强现实:在虚拟现实和增强现实应用中,通过拾取点最小化视差误差可以提高虚拟物体与真实场景的融合效果。
  3. 机器人导航:通过拾取点最小化视差误差可以提供机器人导航所需的三维环境信息,帮助机器人进行路径规划和避障。

腾讯云相关产品推荐: 腾讯云提供了一系列与云计算和计算机视觉相关的产品和服务,以下是一些推荐的产品和产品介绍链接地址:

  1. 云服务器(CVM):提供弹性、可靠的云服务器实例,满足不同规模和需求的计算资源需求。产品介绍链接
  2. 人工智能计算平台(AI Lab):提供了一站式的人工智能开发平台,包括图像识别、语音识别、自然语言处理等功能。产品介绍链接
  3. 视频处理服务(VOD):提供视频上传、转码、剪辑、播放等功能,适用于视频处理和分发场景。产品介绍链接
  4. 云数据库 MySQL 版(CDB):提供高性能、可扩展的云数据库服务,适用于存储和管理大规模数据。产品介绍链接
  5. 云原生容器服务(TKE):提供高度可扩展的容器化应用管理平台,支持容器部署、弹性伸缩等功能。产品介绍链接

请注意,以上推荐的产品和链接仅为示例,具体选择应根据实际需求和情况进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

实现机器人的系统1和系统2 Slow and fast

处理多步骤任务时总是存在权衡。高级认知过程可以在不确定的环境中找到实现目标的最佳行动序列,但它们很慢并且需要大量的计算需求。相反,较低级别的处理允许对环境刺激做出快速反应,但确定最佳行动的能力有限。通过重复相同的任务,生物有机体找到了最佳的权衡:从原始运动开始通过创建特定于任务的神经结构,组合低级结构然后逐渐出现高级复合动作。最近被称为“主动推理”理论框架可以捕获人类行为的高级和低级过程,但任务专业化如何在这些过程中发生仍不清楚。在这里,我们比较了拾放任务的两种分层策略:具有规划功能的离散连续模型和具有固定转换的仅连续模型。我们分析了定义内在和外在领域运动的几个后果。最后,我们提出如何将离散动作编码为连续表示,将它们与不同的运动学习阶段进行比较,并为进一步研究仿生任务适应奠定基础。

01
  • 彻底解决AI视觉深度估计

    深度估计是一个不适定问题;不同形状或尺寸的物体,即使在不同距离上,也可能投影到视网膜上的同一图像上。我们的大脑使用多种线索来进行深度估计,包括单眼线索,如运动视差,以及双眼线索,如重影。然而,深度估计所需的计算如何以生物学合理的方式实现尚不清楚。基于深度神经网络的最新方法隐式地将大脑描述为分层特征检测器。相反,在本文中,我们提出了一种将深度估计视为主动推理问题的替代方法。我们展示了深度可以通过反转一个同时从二维对象信念预测眼睛投影的分层生成模型来推断。模型反演包括一系列基于预测编码原理的生物学合理的均匀变换。在非均匀视点分辨率的合理假设下,深度估计有利于采用主动视觉策略,通过眼睛对准对象,使深度信念更准确。这种策略不是通过首先将注意力集中在目标上然后估计深度来实现的;相反,它通过行动-感知循环结合了这两个过程,其机制类似于在物体识别过程中的快速眼球运动。所提出的方法仅需要局部的(自上而下和自下而上的)消息传递,可以在生物学上合理的神经回路中实现。

    01

    基于双目视觉的树木高度测量方法研究

    随着人工智能时代的到来,计算机视觉领域被广泛应用到各个行业中。同样的,人工智能改变着传统林业的研究方法,林业信息工程技术日渐成熟。针对传统树高测量方法中存在的结果准确性不高、操作困难、专业知识转化为规则困难等问题,采用了一种基于双目立体视觉理论计算树高的方法,实现了树木高度的无接触测量。以双目相机作为采集设备,基于MATLAB、VS2015开发平台,采用张正友单平面棋盘格相机标定方法进行单目标定和双目标定,从而获取双目相机2个镜头的参数。通过SGBM算法和BM算法立体匹配后获得视差深度图像,进而获取树木关键点的三维坐标信息并以此来计算树木高度。将深度学习与双目视觉相结合可以实现树木同时在二维和三维空间的信息提取。在VS2015上的试验结果表明,该方法操作相对简单,并且能够较为准确地测量树木高度,SGBM算法树高测量结果的相对误差范围为0.76%~3.93%,BM算法相对误差范围为0.29%~3.41%。结果表明:采用双目视觉技术测量树木高度可以满足林业工程中对于树高测量的精度需要。

    03

    这个机器人太牛了,陌生物体抓取识别成功率高达100%

    给杂货拆包是一件简单但乏味的工作:手伸进包里,摸索着找到一件东西,然后把它拿出来。简单瞄一眼之后,你会了解这是什么东西,它应该存放在哪里 如今,麻省理工学院和普林斯顿大学的工程师们已经开发出一种机器人系统,未来有一天,他们可能会帮你完成这项家务,并协助其他拣选和分拣工作,例如在仓库组织产品,或在宅区清除瓦砾。 该团队的“拾放”系统由一个标准的工业机器人手臂组成,研究人员配备了一个定制抓手和吸盘。他们开发了一种“未知物体”的抓取算法,使机器人能够评估一堆随机物体,并确定在杂物中抓取或吸附物品的最佳方式,而

    08
    领券