透视变换原理 透视变换是将图像从一个视平面投影到另外一个视平面的过程,所以透视变换也被称为投影映射(Projection Mapping)。我们知道在图像的仿射变换中需要变换矩阵是一个2x3的两维平面变换矩阵,而透视变换本质上空间立体三维变换,根据其次坐标方差,要把三维坐标投影到另外一个视平面,就需要一个完全不同的变换矩阵M,所以这个是透视变换跟OpenCV中几何仿射变换最大的不同。 OpenCV中透视变换的又分为两种: - 密集透视变换 - 稀疏透视变换 我们经常提到的对图像的透视变换都是指密集透视变换,
透视变换是将图像从一个视平面投影到另外一个视平面的过程,所以透视变换也被称为投影映射(Projection Mapping)。在图像的仿射变换中需要变换矩阵是一个2x3的两维平面变换矩阵,而透视变换本质上空间立体三维变换,根据其次坐标方差,要把三维坐标投影到另外一个视平面,就需要一个完全不同的变换矩阵M,所以这个是透视变换跟OpenCV中几何仿射变换最大的不同。变换公式为:
上面这副图就是我们今天要处理的了,我们想把它从拍照视角变成鸟瞰图,这是机器人导航中的常用手段,以便在该平面上进行规划和导航。
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
最近闲着跟着油管博主murtazahassan,学习了一下LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision,对应的Github源代码地址为:Learn-OpenCV-cpp-in-4-Hours
我们在拍摄图片的时候无法保证图片是正下方垂直拍摄的,所以在获取图像的时候会防止我们提取正确的图像,这里我们就需要用到了透视变换。今天我们在试一下OpenCV中的透视变换。
透视变换的方程组有8个未知数,所以要求解就需要找到4组映射点,四个点就刚好确定了一个三维空间。
以前文章《C++ OpenCV检测并提取数字华容道棋盘》中有部分是用到了透视变换,不过因为在自己适应边缘检测中,有些图片干扰项太多,导致想要的东西提取不出来,于是这篇就是做了一个手动载取位置来做透视变换的小练习。
这一周主要在研究图像的放射变换与透视变换,目前出现的主要问题是需要正确识别如下图中的编码标志点圆心。 1.当倾斜角较小时:
常见的2D图像变换从原理上讲主要包括基于2×3矩阵的仿射变换和基于3×3矩阵透视变换。
之前在公众号中写过一篇文章——图像处理的仿射变换与透视变换,这篇文章是对透视变换做了进一步深入研究。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
不知道大家会不会有这种感觉,经常是觉得自己学的技术没有用,担心自己能不能胜任工作。因为我们通常学的都是基础的,老师教完之后做几道题目会做考试过了代表学过了。
图像变换最直接的应用就是改变图像的形状、大小、方向等等,这些在OpenCV 中有部分现成的实现。
一直关注我的朋友应该知道前段时间使用OpenCV做了数字华容道的游戏及AI自动解题,相关文章《整活!我是如何用OpenCV做了数字华容道游戏!(附源码)》《趣玩算法--OpenCV华容道AI自动解题》,一直也想在现在的基础上再加些东西,就考虑到使用图像读取了棋盘,生成对应的棋局再自动AI解题。
前面我们学习了《C++ OpenCV特征提取之BFMatcher匹配》、《C++ OpenCV特征提取之FLANN特征匹配》都是特征匹配的方法,针对平面对象的识别都是在前面这些方法的基础上我们再进一步进行处理就可以实现。要实现这一步,我们就要进行对象形变与位置变换。
上一篇《PaddleOCR C++动态库编译及调用识别(一)》中把PaddleOCR的动态库编译完也调用成功,也考虑了几个可以优化的方法,本来也是想按自己的想法做的优化,过程中也踩到了不少的坑,慢慢填吧。这篇文章算是做了一个踩坑的记录。
有时候文本图像,需要适当的校正之后才会得到比较好的对齐显示,常用的方法有两个,一个是基于几何变换,另外一个是基于透视变换。常见的处理步骤如下:
以前的文章《C++ OpenCV之透视变换》介绍过透视变换,当时主要是自己固定的变换坐标点,所以在想可不可以做一个通过轮廓检测后自适应的透视变换,实现的思路通过检测主体的轮廓,使用外接矩形和多边形拟合的四个最边的点进行透视变换。
原来的文章《C++ OpenCV透视变换改进---直线拟合的应用》,通过RotatedRect旋转矩形获取到透视变换的4个点,再进行透视变换。结果昨天重新运行程序的时候发现透视变换后的图像坐标点是不对的,图像过完全不一样了。
参考自:https://www.pyimagesearch.com/2016/10/03/bubble-sheet-multiple-choice-scanner-and-test-grader-using-omr-python-and-opencv/
仿射变换: 仿射变换是一种二维坐标到二维坐标之间的线性变换,并保持二维图形的“平直性”。转换前平行的线,在转换后依然平行。如下图: import cv2 import numpy as np fro
仿射变换保证物体形状的“平直性”和“平行性”。透视变换不能保证物体形状的“平行性”。仿射变换是透视变换的特殊形式。 将透视变换写成3*3矩阵形式,即为M; 以下面这张图为例,实现仿射变换,包括旋转,平
非关键字参数有src, M, dsize,分别表示源图像,变换矩阵,变换后的图像的长宽
前一篇《C++ OpenCV透视变换综合练习》中针对透视变换做了一个小练习,上篇中我们用多边形拟合的点集来计算离最小旋转矩形最近的点来定义为透视变换的点,效果是有,无意间又想了一个新的思路,在原来的点的基础上效果会更好一点,其中就用到了直线拟合的方法,今天这篇就说一下优化的思路及直线拟合的函数。
我们通过摄像头拍摄时,除非是俯视图拍摄,否则都会出现变形。离摄像头进的地方大,离摄像头远的地方小。
算法分为4个流程,首先用yolov5s模型从原图中识别出仪,接着用yolov8x-pose模型检测出仪表中的刻度线、指针的关键点,再用DBNetpp模型检测出数值框并用SATRN模型进行文本识别,最后后处理得到读数结果。
王小新 编译自 Medium 量子位 出品 | 公众号 QbitAI 找到马路上的车道线,对于人类来说非常容易,但对计算机来说,一点阴影、反光、道路颜色的微小变化、或者车道线被部分遮挡,都会带来很大的困难。 正在Udacity学习自动驾驶课程的Michael Virgo写了两篇博客文章,介绍了如何构建检测模型。 以下内容编译自他的文章: 在Udacity无人车纳米学位第一学期课程的五个项目中,有两个是关于车道检测的。 其中第一个项目介绍了一些基本的计算机视觉技术,如Canny边缘检测。 图1:Ca
perspective 属性规定了观察者与z=0平面的距离,使具有三维位置变换的元素产生透视效果。z>0的三维元素比正常大,而z<0时则比正常小,大小程度由该属性的值决定。
在OpenGL中有两个重要的投影变换:正交投影(Orthographic Projection)和透视投影(Perspective Projection),二者各有对应的变换矩阵。初学者比较难理解这两个矩阵是怎么来的。本文从数学角度来反向推导两个投影矩阵。 推导的思路 正交投影和透视投影的作用都是把用户坐标映射到OpenGL的可视区域。如果我们能根据二者的变换矩阵来推出最终经过映射的坐标范围恰好是OpenGL的可视区域,也就是反向推导出了这两个投影矩阵。 OpenGL的可视区域的坐标范围是一个边长为2
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/124836.html原文链接:https://javaforall.cn
图像处理之理解Homography matrix(单应性矩阵) 单应性矩阵是投影几何中一个术语,本质上它是一个数学概念,但是在OpenCV中却是有几个函数与透视变换相关的函数,都用到了单应性矩阵的概念与知识。小编跟很多人一样,刚开始学习图像处理对单应性矩阵不是很了解,通过项目实践慢慢知道了一些这方面的知识和自己对它的理解,就跟大家分享一下。 单应性矩阵概念 这里说的单应性矩阵主要是指平面单应性矩阵,在三轴坐标中XYZ,Z=1这个有点类似于三维的齐次坐标。单应性矩阵主要用来解决两个问题, 一是表述真实世界中一
单应性矩阵是投影几何中一个术语,本质上它是一个数学概念,但是在OpenCV中却是有几个函数与透视变换相关的函数,都用到了单应性矩阵的概念与知识。小编跟很多人一样,刚开始学习图像处理对单应性矩阵不是很了解,通过项目实践慢慢知道了一些这方面的知识和自己对它的理解,就跟大家分享一下。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wpxu08/article/details/70208378
视锥就是场景中的一个三维空间,它的位置由视口的摄像机来决定。这个空间的形状决定了摄像机空间中的模型将被如何投影到屏幕上。透视投影是最常用的一种投影类型,使用这种投影,会使近处的对象看起来比远处的大一些。对于透视投影,视锥可以被初始化成金字塔形,将摄像机放在顶端。这个金字塔再经过前、后两个剪切面的分割,位于这两个面之间的部分就是视锥。只有位于视锥内的对象才可见。
算法:透视变换,也叫投影变换,是将矩形映射为任意四边形。仿射变换则是将矩形映射为任意平行四边形,
本文介绍了如何识别微信小程序码的设计和识别过程,包括简化图片处理、定位花瓣中心点、校正二维码角度和采样识别等步骤。
在这个项目中,我使用 Python 和 OpenCV 构建了一个 pipeline 来检测车道线。这个 pipeline 包含以下步骤:
本文实例为大家分享了python opencv进行图像拼接的具体代码,供大家参考,具体内容如下
由于近期在研究相机与投影仪的标定程序时,需要将结构光图片与灰点相机拍摄得到的图片中,找出角点之间的对应性,使用了如下一条代码:
今天的这篇文章是优质博客推荐系列的第二篇。怎么说呢?其实不想搞一个系列,因为搞一个系列容易让大家烦,很多人就不太爱看了,感觉都差不多。但是,我这个人就是一个有始有终的人,一旦干起来,就会坚持下去。你们不想看,也得看,因为都是推荐的好博客,对大家会有很好的帮助。 废话不多少了,赶紧开车,驶入正题,同志们坐好了,坐稳了。我可不希望大家跟我上面说的一样,半路下车。 Pqpo's Notes 今天我们推荐的优质博客是:Pqpo's Notes 。里面有一些非常棒的文章,值得大家一看,我们来举例几个不错的文章,让大家
OpenCV提供了两个转换函数cv.warpAffine和cv.warpPerspective,您可以使用它们进行各种转换。cv.warpAffine采用2x3转换矩阵,而cv.warpPerspective采用3x3转换矩阵作为输入。
了解透视图投影原理,利用VC+OpenGL实现立方体的一点、两点、三点透视图算法。
WebAssembly是一种可以让C/C++这些非JavaScript语言编写的代码在浏览器上运行,是一种在web上运行二进制文件的技术标准。
图像的基本变换与仿射变换 6.2 图像的翻转和旋转 图像的翻转 flip(src, flipCode) flipCode=0:上下翻转; flipCode>0:左右翻转; flipCode<0:上下 + 左右翻转; # 图像的翻转 import cv2 import numpy as np # 读取图片 doge = cv2.imread('./doge.jpg') new_doge1 = cv2.flip(doge, flipCode=0) new_doge2 = cv2.flip(doge, fl
本文将利用opencv实现对复杂场景下车道线的实时检测;所使用的图像处理方法主要是在读取图片的基础上,进行多种边缘检测,然后对不同的检测结果进行融合以提取出道路图像,去除其他噪声。然后对提取的连通区域进行判断,找寻最大连通区域最终定为提取的道路。然后根据提取的道路图像,再次利用边缘检测,提取车道线信息,然后利用透视变换将视角变成俯视图,其中透视变换矩阵的四个点由提取道路图像的角点组成。然后对俯视图进行滑动窗口多项式拟合画出车道线,并显示图片和保存成视频!文末附源码。
缩放就是调整图片的大小,使用cv2.resize()函数实现缩放。可以按照比例缩放,也可以按照指定的大小缩放:
之前写了两篇文章分别是图像单应性矩阵变换与图像拼接,图像拼接中使用单应性矩阵实现图像特征对齐,从而为图像拼接特别是无缝拼接打下基础,看一下上一篇我的图像拼接效果如下:
本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下
大体思路可以描述为Canny边缘检测-形态学闭操作-轮廓检测-Hough直线检测-确定四个角点-透视变换。
领取专属 10元无门槛券
手把手带您无忧上云