首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(数据科学学习手札131)pandas中的常用字符串处理方法总结

,此类过程往往都比较繁琐,而pandas作为表格数据分析利器,其内置的基于Series.str访问器的诸多针对字符串进行处理的方法,以及一些top-level级的内置函数,则可以帮助我们大大提升字符串型数据处理的效率...本文我就将带大家学习pandas中常用的一些高效字符串处理方法,提升日常数据处理分析效率: image.png 2 pandas常用字符串处理方法 pandas中的常用字符串处理方法,可分为以下几类:...生成型方法这里指的是,基于原有的单列字符型Series数据,按照一定的规则产生出新计算结果的一系列方法,pandas中常用的有: 2.3.1 利用slice()进行字符切片   当我们想要对字符型Series...: 2.4.2 利用pd.to_numeric()修复数值错误   有些情况下,我们从外部数据源(如excel表)中读入的数据,由于原始数据文件加工的问题,导致一些数值型字段中的某些单元格混入非数值型字符...,如:   这种情况下,直接读入的数据,本应该为数值型的字段会变成object型:   这种时候就可以利用pd.to_numeric()方法,设置参数errors='coerce',就可以将可以合法转为数值型的记录转换为相应的数值

1.3K30

Pandas时序数据处理入门

因为我们的具体目标是向你展示下面这些: 1、创建一个日期范围 2、处理时间戳数据 3、将字符串数据转换为时间戳 4、数据帧中索引和切片时间序列数据 5、重新采样不同时间段的时间序列汇总/汇总统计数据 6...如果想要处理已有的实际数据,可以从使用pandas read_csv将文件读入数据帧开始,但是我们将从处理生成的数据开始。...将数据帧索引转换为datetime索引,然后显示第一个元素: df['datetime'] = pd.to_datetime(df['date']) df = df.set_index('datetime...让我们将date_rng转换为字符串列表,然后将字符串转换为时间戳。...我建议您跟踪所有的数据转换,并跟踪数据问题的根本原因。 5、当您对数据重新取样时,最佳方法(平均值、最小值、最大值、和等等)将取决于您拥有的数据类型和取样方式。要考虑如何重新对数据取样以便进行分析。

4.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    同时使用两种方法进行对比: 1.将生成的分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式的平均I/O...2.对特征进行转换 在上一节中,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用的pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。...所有格式都显示出良好的效果,除了hdf仍然需要比其他格式更多的空间。 ? 结论 正如我们的上面的测试结果所示,feather格式似乎是在多个Jupyter之间存储数据的理想选择。...此外,当其他格式发挥最佳效果时,它并未考虑所有可能的情况。所以我们也需要根据具体情况进行选择! -END- 来源:towardsdatascience、GitHub等 编译:刘早起(有删改)

    2.9K21

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    同时使用两种方法进行对比: 1.将生成的分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式的平均I/O...2.对特征进行转换 在上一节中,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用的pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。...所有格式都显示出良好的效果,除了hdf仍然需要比其他格式更多的空间。 ? 结论 正如我们的上面的测试结果所示,feather格式似乎是在多个Jupyter之间存储数据的理想选择。...此外,当其他格式发挥最佳效果时,它并未考虑所有可能的情况。所以我们也需要根据具体情况进行选择! -END- 来源:towardsdatascience、GitHub等 编译:刘早起(有删改)

    2.4K30

    Pandas 秘籍:6~11

    出乎意料的是,MD_EARN_WNE_P10和GRAD_DEBT_MDN_SUPP均为object数据类型。 导入时,如果列中至少包含一个字符串,则 pandas 将列的所有数值强制转换为字符串。...我们发现PrivacySuppressed字符串造成严重破坏。 Pandas 可以使用to_numeric函数将仅包含数字字符的所有字符串强制转换为实际的数字数据类型。...要覆盖在to_numeric遇到无法转换的字符串时引发错误的默认行为,必须将coerce传递给errors参数。 这将强制所有非数字字符串变为缺失值(np.nan)。 几列没有有用或有意义的最大值。...此步骤的其余部分将构建一个函数,以在 Jupyter 笔记本的同一行输出中显示多个数据帧。 所有数据帧都有一个to_html方法,该方法返回表的原始 HTML 字符串表示形式。...Seaborn 处理整洁(长)数据,而 Pandas 处理汇总(宽)数据效果最佳。 Seaborn 在其绘图函数中还接受了 Pandas 数据帧对象。

    34K10

    Pandas 秘籍:1~5

    二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...如果传递了字符串,它将返回一维序列。 如果将列表传递给索引运算符,它将以指定顺序返回列表中所有列的数据帧。 步骤 2 显示了如何选择单个列作为数据帧而不是序列。...Pandas 还有 NumPy 中不提供的其他分类数据类型。 当转换为category时,Pandas 内部会创建从整数到每个唯一字符串值的映射。 因此,每个字符串仅需要在内存中保留一次。...除空字符串外,所有字符串均为True。 所有非空集,元组,字典和列表都是True。 空的数据帧或序列不会求值为True或False,而是会引发错误。...步骤 3 使用此掩码的数据帧删除包含所有缺失值的行。 步骤 4 显示了如何使用布尔索引执行相同的过程。 在数据分析过程中,持续验证结果非常重要。 检查序列和数据帧的相等性是一种非常通用的验证方法。

    37.6K10

    时间序列数据处理,不再使用pandas

    DarTS GluonTS Pandas DataFrame是许多数据科学家的基础。学习的简单方法是将其转换为其他数据格式,然后再转换回来。本文还将介绍长格式和宽格式数据,并讨论库之间的转换。...该数据集以Pandas数据帧的形式加载。...输出结果是一个二维 Pandas 数据框: 不是所有的Darts数据都可以转换成二维Pandas数据框。...Darts--转换为 Numpy 数组 Darts 可以让你使用 .all_values 输出数组中的所有值。缺点是会丢弃时间索引。 # 将所有序列导出为包含所有序列值的 numpy 数组。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。

    21810

    直观地解释和可视化每个复杂的DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Pandas提供了各种各样的DataFrame操作,但是其中许多操作很复杂,而且似乎不太平易近人。本文介绍了8种基本的DataFrame操作方法,它们涵盖了数据科学家需要知道的几乎所有操作功能。...诸如字符串或数字之类的非列表项不受影响,空列表是NaN值(您可以使用.dropna()清除它们 )。 ? 在DataFrame df中Explode列“ A ” 非常简单: ?...how参数是一个字符串,它表示四种连接 方法之一, 可以合并两个DataFrame: ' left ':包括df1的所有元素, 仅当其键为df1的键时才 包含df2的元素 。

    13.3K20

    PySpark UD(A)F 的高效使用

    所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。

    19.7K31

    Pandas 学习手册中文第二版:1~5

    在本章中,我们将介绍: Pandas 是什么,为什么被创造出来,它给您带来什么 Pandas 与数据分析和数据科学之间的关系 数据分析涉及的过程以及 Pandas 如何支持 数据和分析的一般概念 数据分析和统计分析的基本概念...这些功能包括处理缺失数据,转换数据类型,使用格式转换,更改测量频率,将来自多组数据的数据连接,将符号映射/转换为共享表示以及将数据分组的智能方法。 我们将深入探讨所有这些内容。...pandas 本质上用于处理结构化数据,但提供了多种工具来促进将非结构化数据转换为我们可以操纵的手段。...以下内容检索数据帧的第二行: 请注意,此结果已将行转换为Series,数据帧的列名称已透视到结果Series的索引标签中。...使用这些属性被认为是最佳实践。 使用布尔选择来选择行 可以使用布尔选择来选择行。 当应用于数据帧时,布尔选择可以利用多列中的数据。

    8.3K10

    精通 Pandas 探索性分析:1~4 全

    /img/2e110b32-4710-4f41-87e6-6801cf75d036.png)] 将字符串转换为日期时间 这里最主要的是我们的数据集有一个日期列,但它显示为对象或字符串数​​据类型。...我们还研究了字符串方法在 Pandas 中的使用,最后,我们学习了如何更改 Pandas 序列的数据类型。 在下一章中,我们将学习处理,转换和重塑数据的技术。...三、处理,转换和重塑数据 在本章中,我们将学习以下主题: 使用inplace参数修改 Pandas 数据帧 使用groupby方法的场景 如何处理 Pandas 中的缺失值 探索 Pandas 数据帧中的索引...重命名 Pandas 数据帧中的列 在本节中,我们将学习在 Pandas 中重命名列标签的各种方法。 我们将学习如何在读取数据后和读取数据时重命名列,并且还将看到如何重命名所有列或特定列。...我们看到了如何处理 Pandas 中缺失的值。 我们探索了 Pandas 数据帧中的索引,以及重命名和删除 Pandas 数据帧中的列。 我们学习了如何处理和转换日期和时间数据。

    28.2K10

    python dtype o_python – 什么是dtype(’O’)? – 堆栈内存溢出「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 当你在数据帧中看到dtype(‘O’) ,这意味着Pandas字符串。 什么是dtype ? 什么属于pandas或numpy ,或两者,或其他什么?...数据类型对象是numpy.dtype类的一个实例, numpy.dtype 更加精确地理解数据类型,包括: 数据类型(整数,浮点数,Python对象等) 数据的大小(例如整数中的字节数) 数据的字节顺序...(little-endian或big-endian) 如果数据类型是结构化的,则是其他数据类型的聚合(例如,描述由整数和浮点数组成的数组项) 结构“字段”的名称是什么 每个字段的数据类型是什么 每个字段占用的内存块的哪一部分...如果数据类型是子数组,那么它的形状和数据类型是什么 在这个问题的上下文中, dtype属于pands和numpy,特别是dtype(‘O’)意味着我们期望字符串。...will convert datetime to object only df.iloc[4,:] = ” # will convert all columns to object 在这里要注意,如果我们在非字符串列中设置字符串

    2.6K20

    AI 技术讲座精选:如何利用 Python 读取数据科学中常见几种文件?

    我还没提那些非结构化数据和半结构化数据呢。 对于所有数据科学家和数据工程师来说,和不同的格式打交道都乏味透顶!但现实情况是,人们很少能得到整齐的列表数据。...因此,熟悉不同的文件格式、了解处理它们时会遇到的困难以及处理某类数据时的最佳/最高效的方法,对于任何一个数据科学家(或者数据工程师)而言都必不可少。...PS:在后文中提到的数据科学家,同样也包括数据工程师以及所有的数据科学专家。 目 录 文件格式是什么。 数据科学家应当了解各种不同文件格式的原因。...你可以用 Python 中的“pandas”库来加载数据。...在这个声明中,version 指明了 XML 的版本,encoding 指明了文档中使用的字符编码。 是该文档中的一个标签。所有 XML 标签都需要被关闭。

    5.1K40

    python科学计算之Pandas使用(三)

    关于csv文件 csv 是一种通用的、相对简单的文件格式,在表格类型的数据中用途很广泛,很多关系型数据库都支持这种类型文件的导入导出,并且 excel 这种常用的数据表格也能和 csv 文件之间转换。...纯文本意味着该文件是一个字符序列,不含必须象二进制数字那样被解读的数据。...CSV 文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的是逗号或制表符。通常,所有记录都有完全相同的字段序列。...什么时候也不要忘记这种最佳学习方法。从上面结果可以看出,csv 模块提供的属性和方法。仅仅就读取本例子中的文件: ? 算是稍有改善。...用 Pandas 读取 如果对上面的结果都有点不满意的话,那么看看 Pandas 的效果: ? 看了这样的结果,你还不感觉惊讶吗?你还不喜欢上 Pandas 吗?这是多么精妙的显示。它是什么?

    1.4K10

    如何从 Pandas 迁移到 Spark?这 8 个问答解决你所有疑问

    Spark 非常适合大型数据集❤️ 这篇博文会以问答形式涵盖你可能会遇到的一些问题,和我一开始遇到的一些疑问。  问题一:Spark 是什么? Spark 是一个处理海量数据集的框架。...Spark 学起来更难,但有了最新的 API,你可以使用数据帧来处理大数据,它们和 Pandas 数据帧用起来一样简单。 此外,直到最近,Spark 对可视化的支持都不怎么样。...作为 Spark 贡献者的 Andrew Ray 的这次演讲应该可以回答你的一些问题。 它们的主要相似之处有: Spark 数据帧与 Pandas 数据帧非常像。...有时,在 SQL 中编写某些逻辑比在 Pandas/PySpark 中记住确切的 API 更容易,并且你可以交替使用两种办法。 Spark 数据帧是不可变的。不允许切片、覆盖数据等。...我们介绍了一些 Spark 和 Pandas 的异同点、开始使用 Spark 的最佳方法以及一些利用 Spark 的常见架构。

    4.4K10

    Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化

    我们可以使用dt.strftime将字符串转换为日期。在创建 sp500数据集 时,我们使用了strptime。...hours = pd.date_range('2019-01-01', periods=24, freq='H') print(hours) pandas.DataFrame.asfreq 返回具有新频率的数据帧或序列...对于数据中缺失的时刻,将添加新行并用NaN填充,或者使用我们指定的方法填充。通常需要提供偏移别名以获得所需的时间频率。...时间序列数据是有序的,并且需要平稳性才能进行有意义的摘要统计。 平稳性是时间序列分析中许多统计过程的假设,非平稳数据经常被转化为平稳数据。 平稳性有以下几种分类: 平稳过程/模型:平稳的观察序列。...如何处理非平稳时间序列 如果时间序列中存在明显的趋势和季节性,可以对这些组成部分进行建模,将它们从观测值中剔除,然后在残差上训练模型。 去趋势化 有多种方法可以从时间序列中去除趋势成分。

    67600

    Python探索性数据分析,这样才容易掌握

    下面的代码显示了必要的 import 语句: ? 使用 Pandas 库,你可以将数据文件加载到容器对象(称为数据帧, dataframe)中。...首先,让我们使用 .value_counts() 方法检查 ACT 2018 数据中 “State” 列的值,该方法按降序显示数据帧中每个特定值出现的次数: ?...我的方法如下图展示: ? 函数 compare_values() 从两个不同的数据帧中获取一列,临时存储这些值,并显示仅出现在其中一个数据集中的任何值。...坏消息是存在数据类型的错误,特别是每个数据帧中的“参与”列都是对象类型,这意味着它被认为是一个字符串。...这种类型转换的第一步是从每个 ’Participation’ 列中删除 “%” 字符,以便将它们转换为浮点数。下一步将把除每个数据帧中的 “State” 列之外的所有数据转换为浮点数。

    5K30

    ValueError: could not convert string to float: ‘abc‘ 解决方案

    这是一个涉及类型转换的错误,通常在尝试将非数字字符串转换为浮点数时出现。通过这篇文章,你将了解到错误的根源,如何有效避免,以及几种优化代码的方式。...特别是在数据科学或数据清洗的场景下,我们需要将字符串、整数或其他类型转换为浮点数。...可能的引发原因 用户输入的非数字字符 从外部文件(如CSV、Excel)中读取到不符合数字格式的数据 爬虫抓取的数据中包含无效的格式 API返回的非数字字段 如何解决 ValueError: could...使用pandas进行批量处理 在处理大量数据时,尤其是来自文件的输入,pandas是一个非常强大的工具。它的to_numeric()函数可以帮助你在批量转换时处理非数字数据。...最佳实践 数据验证:在数据进入系统之前,应尽量验证数据的合法性。无论是通过正则表达式、类型检查,还是外部工具(如pandas),确保数据格式正确是避免错误的第一步。

    29610
    领券