随着时代的发展,生活质量的提高,汽车是现代生活的必需品。汽车保有量日益增多,势必会带来停车难、停车管理难的问题。传统IC/ID取卡票的方式虽然看似一个简单的动作,当车流量较大时就会造成停车场出入口的拥堵,给人们停车带来不便,浪费大量的停车时间;停车场票箱内卡容量有限,需要停车场管理人员不停地往票箱内放置卡片,而对于车主来说,由于卡片的保存不当,丢卡的现象时常出现。一旦卡片丢失,整个停车记录就无法核对,给停车场管理带来一些麻烦。
随着汽车的需求暴增,车辆管理成为了城市管理的重中之重。移动端车牌识别技术已被广泛应用于城市智能交通、智慧小区的系统中,以往是手动录入车牌信息或者是一笔一划抄写车牌信息,如此,会增加人为的误差,降低了工作效率,后来移动端车牌识别技术在车辆管理中被应用,车辆管理体验感得到了提升,如今更是完美的集成了移动端车牌识别算法,通过前端就能进行解帧识别车牌,无需有有一个图片传输返回结果的过程,直接就可以把车牌识别出来,这是高新技术的又一个台阶。
在数字化时代,随着大众对出行要求的提升,汽车数量也成与日俱增,为城市与交通管理带来了许多困扰。旭帆科技为给交通管理和车辆安全提供高效的解决方案,特此研发了AI智能车辆检测与车牌识别算法。
导语 数据万象内容识别基于深度学习等人工智能技术,与对象存储 COS 深度融合,底层直接调用COS的数据,实现数据存储、流动、处理、识别一体化,提供综合性的云原生 AI 智能识别服务,包含图像理解(解析视频、图像中的场景、物品、动物等)、图像处理(一键抠图、图像修复)、图像质量评估(分析图像视觉质量)、图像搜索(在指定图库中搜索出相同或相似的图片)、人脸识别、文字识别、车辆识别、语音识别、视频分析等多维度能力。用户可使用数据万象提供的自动化工作流或批量任务处理串联业务流程,大幅减少人力成本,缩短产出时间的同
由于 ANPR 系统需要相对先进的摄像头、计算能力和软件,很少有人会猜测该技术是由英国警察科学发展处在 40 多年前开发的。
这是NVIDIA在2021年初公布的一个开源项目,用NVIDA Jetson设备上的DeepStream视频分析套件实现“车牌识别”的功能,这是个实用性非常高的应用,能应用在各类小区门禁管理、停车场管理、道路违章等使用场景。
随着移动端车牌识别技术的日趋完善,渡船公司把移动端车牌识别SDK集成到票务系统中,检票员通过集成了我司车牌识别功能的手持终端,对登船的每一辆车车牌进行扫描识别,自动识别车牌并判断车辆是否正常购买船票,不仅大大的提升了登船效率,也从源头杜绝了逃票、漏票事件的发生。
目前很多地方都会用到移动端车牌识别这个技术,大家可以留意一下道路停车,汽修服务,移动警务等,通过车牌识别这个技术,实现快速对车辆进行管理与服务。
随着智慧城市愿景的推广,以及车辆管理需求的迅猛扩增,对于各类车辆识别系统有了新的要求。而以往的固定式特定设备的车牌识别系统已经不能够满足灵活的智能交通系统需求,例如路边停车管理和交管违章登记等。本文简单介绍一种基于Android平台的车牌识别技术,该技术不依赖其他任何第三方库,能够在复杂背景下迅速识别多种车牌。
传统的称重管理系统是采用人工录入车牌方式,需要较长的等待时间,且容易产生失误甚至作弊等问题。另外,汽车称量现场环境恶劣,严重影响工作人员身心健康,其中引入一个新的概念“无人值守称重”。
随着移动行业的爆发式发展,手机配置不断提高,基于手机平台的信息采集、图像处理、数据传输等方面的研究也成为了热点,这使得基于手机平台上的车牌识别成为可能。传统的车牌识别系统一般都基于固定的桌面平台、图像采集不灵活,特别是对于交通管理部门来说,对违章车辆车牌的自动登记非常不便,因此基于移动端车牌识别出现了。
人工智能浪潮一波又一波,没有车牌识别,车辆限外的是难以监管下去的,下面说说比较普遍的车牌识别sdk在不同平台的用法。
随着社会经济的发展与汽车的日益普及带来巨大的城市交通压力,在此背景下,智能交通系统成为解决这一问题的关键。而在提出发展无线智能交通系统后,作为智能交通的核心,车牌识别系统需要开始面对车牌识别移动化的现实需求。基于实现车牌识别移动化这一目标,一种基于Android移动终端的车牌识别解决方案在Android平台上实现了该系统。
充电桩车牌识别应用场景,车牌识别相机采用吊装的方式安装到每个充电桩车位上,精准的识别停在该车位上的车牌号码。
目前很多城市为了缓解停车压力,在不影响道路使用的情况下,在道路上划出一部分停车位,来供车主使用。国内路边占道停车主要是使用咪表、手持终端及人工的方式进行管理和收费。对于占道停车管理来说,在移动端集成一个优秀的车牌识别是必要的,能够大大提高工作效率。如果人工记录车牌,一个车牌的记录、上传时间要十秒左右,而车牌识别通过移动端摄像头拍摄并识别车牌信息,完成录入的时间只需2~3秒。如此方便快捷的车牌识别,未来必将成为占道停车管理的必备软件。移动端车牌识别系统是基于Android、iOS平台的车牌识别应用程序,采用手机、平板电脑摄像头拍摄汽车牌照图像,然后通过OCR软件对车牌颜色、车牌号进行识别。
随着机动车辆的大幅度增加,在带动国民经济发展的同时,也给中国道路交通带来了众多的烦恼,机动车违法、违章行为是造成交通事故和影响正常交通秩序的主要原因之一;停车难,停车场管理需要更加智能高效的管理方式。而车牌号码作为车辆唯一身份证,它的特殊性与重要性成为智能交通系统不可或缺的重要组成部分。那如何快速录入这些车牌号码呢?
随着社会的发展,城市中的汽车越来越多。城市由于汽车的增加造成的拥挤给人们的生活带来了极大的不便,这种不便迫使人们去寻找高技术有效手段去解决这种不便。很多的大型停车场收费系统管理存在着排队时间长、管理成本高、劳动强度大等各种弊端,顺应时代发展的一些占路停车场和小型露天停车场也应运而生,然而这些停车场收费透明度低、资金流失和车辆失窃也给车主和管理者造成了较大的困扰,因此需要一些较为快捷有效的管理系统去解决这些问题。
这个项目是良月柒在逛社区时发现的,刚看到它,思绪直接被拉回了几年前,当初有同学的毕设就是停车场管理系统,关键的功能——车牌识别,连硬件都整上了,一整套流程跑下来,pretty......
随着车辆的不断增加,车多位少,停车供需的矛盾日益激化,新能源汽车保有量的持续增长,对停车设施提出了新的市场需求。城市停车面临着找车位难的问题。一方面表现在无泊位资源,另一方面有车位但是车主无法有效获取空位信息,导致车位资源应用效率低下。
目前,我国警务通、停车场手持收费机等移动终端的使用比较普及,如果在这些终端上能够集成车牌识别功能,替代原来的手工记录,然后再人工录入电脑的步骤,让车牌的识别、记录工作变得快捷、便利、准确,会给业务人员带来很大的便利。现在出现一款基于Android、iOS平台的手机拍照车牌识别SDK,可方便的植入到警务通、手持收费机、掌上电脑、手机等手持终端上。
服务器端车牌识别即服务器版车牌OCR识别软件,该软件可部署在客户私有服务器中(私有本地服务器或云服务器均可),APP和业务系统可通过web service接口调用该识别服务,设备端只负责拍摄图像后上传,上传到已部署服务器端车牌识别软件的服务器中进行识别,识别完成后再返回标准的XML数据。
车牌识别OCR技术作为一种智能化的识别系统,在现代城市的交通管理和安全领域发挥着越来越重要的作用。本文将探讨车牌识别 OCR 接口在智能停车、安防监控以及数据统计方面的实际应用。通过深入研究这些应用场景,我们可以了解这一技术如何提高交通效率、增强安全措施,并为城市规划和交通管理提供有价值的数据。
随着科技技术的发展,人工智能的技术越来越优化,软硬件的算法和技术要求也越来越高,其中,TH-OCR算法在各个行业中有极其重要的作用,OCR识别算法-车牌识别在各个领域有很大的作用,比如:警务、交通、高速、停车场、汽车后市场等等领域都有运用到我们的车牌识别。
车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位。车牌识别系统可分为图像预处理、车牌定位、字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。 本系统除了实现了车牌识别还实现了人脸识别、车辆信息和用户信息的管理。对于陌生人的管理,整体架构是SpringBoot + OpenCV。
易泊PC端车牌识别SDK融合了车牌定位、车牌字符切分、车牌字符识别等算法,使该系统具有识别效率高、速度快、适应性强、使用方便等优势,技术处于国际先进水平。大力发展机器人、人工智能产业,巡逻机器人也被多家机器人研发厂商所研发,代替传统的人工作业人,机器人替代人公作业,更省时省力便捷高效。现今不少机器人嵌入了PC端车牌识别SDK去用于可疑车辆的巡逻抓拍!
来自巴西阿雷格里港大学的学者发表于ECCV2018的论文《License Plate Detection and Recognition in Unconstrained Scenarios》,给出了一整套完整的车牌识别系统设计,着眼于解决在非限定场景有挑战的车牌识别应用,其性能优于目前主流的商业系统,代码已经开源,非常值得参考。 作者信息:
一个开源的中文车牌识别系统, Git地址为:https://github.com/liuruoze/EasyPR。 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思。我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术、计算机图形学、机器学习等。我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源;2.我希望有人能够一起协助强化这套系统,包括代码、训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等。 相比于
众所周知,当今车牌信息采集环节中,过去传统的手工录入的方式在面对庞大的数量时显得力不从心,如果能直接通过APP采集车牌信息并完成录入则会给工作人员和客户带来巨大的便利。当下,汽车是很多人出行必备的交通工具,路面上行驶的车辆越来越多,不断方便人们出行,但与此同时,车辆的管理难度也在不断的加强——车辆管理、车辆查询、车辆收费等等。与日俱增的车总量与不断压缩的工作人员数量形成了一个巨大的矛盾。
EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。
人工智能的飞速发展逐渐在取缔部分繁杂无用的工序,而移动端离线车牌识别也同样利用人工智能在结束代替人工手动录取车牌,深度学习算法的成果让工作生活更便捷。例如在传统的移动勘查中,工作人员遇到违规的车辆,都要站在路边一字一字、一辆一辆的去抄写车牌号码,虽然后来增加了移动设备,但是还是需要去手动录入车牌号码。如何利用一部手机搞定这个过程呢?
服务器端车牌识别即服务器版车牌OCR识别软件,该软件可部署在客户私有服务器中(私有本地服务器或云服务器均可),APP和业务系统可通过web service接口调用该识别服务,设备端只负责拍摄图像后上传,上传到已部署服务器端车牌识别软件的服务器中进行识别,识别完成后再返回标准的XML数据
使用对象检测网络MobileNet SSD V2版本实现车辆与车牌检测,对得到车辆与车牌ROI对象,分别送到后续的车辆属性识别网络与车牌识别网络中,实现对车辆属性(颜色与车辆类型)识别输出与车牌识别输出。图示如下:
随着我国机动车增长速度的加快,停车场管理系统已经被广泛的应用起来,使车辆管理更加科学化,正规化。经过几年的推广应用,在广泛使用的同时,也发现了一些弊端和漏洞。目前大部分车牌识别基于CS系统,传统的监控无法做到对车牌的识别。我公司EasyCVR产品已经将车牌识别的算法集成到软件中,实现对各类视频源进行实时视频分析,并将识别的车牌信息记录。
车牌识别技术 是智能交通系统中的重要组成部分,它可以对车辆的行驶轨迹进行跟踪和记录,为交通管理提供重要的数据支持。
车牌识别应用于停车场,各个小区,办公楼的出入口,高速公路的各个收费站,那么你赶紧行动把。
车牌识别,是人工智能以及 OCR 领域的重要应用场景。通过拍摄的包含车牌的照片,实现识别出车牌文字的功能,能够大大提高车辆识别效率,在交通违规检测、罪案侦查中能提供有力支持,而 EasyPR,能够快速准确地识别中文车牌。 ◆ 简介 EasyPR,是 liuruoze 在 Gitee 上开源的中文车牌识别系统,仓库位于 https://gitee.com/liuruoze/EasyPR,目前版本为 1.6。 EasyPR 的目标是成为一个简单、高效、准确的非限制场景 (unconstrained situa
本文将使用c#语言,winform框架开发一个车牌识别系统M=,不借助任何框架,纯算法。
随着城市车辆保有量呈现高速增长趋势,交通拥堵、违章行为也日益泛滥。因为车辆未停放在指定区域导致的车位浪费、占用/堵塞交通要道、车辆剐蹭等问题层出不穷。通过人工进行违法停车的监控,不仅让监控人员工作负荷越来越大,而且存在发现不及时、监管效率低和人工成本高等各种问题。
目前车牌识别所遇到的难点主要体现在三个方面,主要体现在:车牌倾斜,图像噪声,还有车牌模糊。
有小伙伴后台和小白说,能不能推荐几个适合入门的开源视觉项目,因为根据实际项目和代码学起来相对来说比较快。小白收集了一些比较简单的开源的项目,会陆陆续续的分享给大家,文末有源码地址。
车辆检测跟踪模块 车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置最佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。 车牌定位模块 车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。 车牌矫正及精
今天介绍一款车牌识别开源系统- yx-image-recognition,大伙需要的可以收藏哈!!!
英特尔在OpenVINO模型加速库中设计了一个全新的车牌识别模型用于识别各种车牌包括中文车牌识别,其中在BITVehicle数据集上对中文车牌的识别准确率高达95%以上。官方发布的OpenVINO支持预训练模型中已经包含了LRPNet模型,可以用于实时的车牌识别。
交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用范例。
由于AI Edge计算的不断发展,许多新的AI系统正在开发中,以提供适用于广泛应用的解决方案。人们对AI Edge的使用产生了浓厚的兴趣,其中之一就是在车库或封闭区域中使用智能停车系统。
对于对于识别车牌的重要一步是对车牌字符的提取。本节将在《基于FPGA车牌位置的定位》的基础上完成车牌上每个字符的提取与定位,为车牌的识别扫清障碍。
见过蹭吃、蹭喝、蹭车、蹭WiFi的 那你见过高速蹭ETC的吗? 来,开 眼 界 了! 据媒体报道 江苏曾有一名男子在一年内两地短程通勤时 “蹭”过ETC191次、逃避缴纳高速过路费5000多元 最终~~~ 被吊销驾驶证、拉入黑名单并判处有期徒刑八个月 跟车逃费成为日常,结果真的很悲剧 这些年,ETC出行得到了大力普及 给广大车主朋友提供了快捷的通关便利 而背后正是得益于车牌识别技术(LPR)的成熟应用 及当下移动金融应用场景线上线下领域的加速拓展 以腾讯云AI汽车相关OCR识别技术为例 基于行业
停车场闸机的车牌识别、道路两侧的违停检测、繁华路口的车流统计、茫茫车海中的车辆锁定…这些场景背后的技术原理大家是否在心中简单构思过?抑或想要抽时间自己攒一套出来可却又不知从何下手?——PP-Vehicle来告诉你答案。
领取专属 10元无门槛券
手把手带您无忧上云