人脸检测及对应属性的识别是现在比较流行的一个技术之一。今天我们“计算机视觉战队”就和大家说说该技术的一些详细细节。
狗的语言也是「自然语言」,人的语言能word to vector,「汪汪」为什么不行?
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中可以选择人脸图片、视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别人脸性别;可对图像中存在的多张人脸进行性别识别,可选择任意一张人脸框选显示结果,检测速度快、识别精度高。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:
主要是 回复 给我发邮件以及QQ上询问的朋友们的一些疑问和需求,这里稍作回复一下。
年龄性别识别,基于insightface功能模块开发的,支持多张人脸同时检测和识别。
这篇文章有4篇论文速递,都是人脸方向,包括人脸识别、人脸表情识别、人脸情绪分类和人脸属性预测。其中一篇是CVPR 2018 workshop。
这两年人工智能项目很火,之前听入职的应届毕业生说:他们的很多朋友和同学都去培训人工智能了。但是到了培训机构真的能够把一个非计算机专业的人培训出来做人工智能吗?我想说:不能。做人工智能项目需要的是算法,需要研究大量的数据,进行建模,推到算法模型才行。根本不是培训机构三四个月就能够培训出来的。
为了展现开发者在Azure的帮助下能轻松迅速地打造智能应用,我们在Azure上用新发布的人脸识别APIs为2015年微软开发者大会的第二天展示搭建了How-Old.net。借助人脸识别API这个网站可以分析用户上传的照片中人物的性别和年龄。这个API的人脸定位功能及性别识别功能大致准确,然而年龄预测结果并不是非常准确,但How-Old.net依旧能博得用户一笑,制造诸多欢乐。当然,同大部分网站一样,我们不会保留用户上传的照片,也不会分享这些照片,我们只会分析照片里人物的年龄和性别。 网站建成后,我们给数百名
斯坦福研究人员最近提出了一种新方法对大模型使用附加机制进行训练后,可以阻止它对有害任务的适应。
这次版本升级,从版本号SeetaFace2 跳过 3 、4、 5直接升级到SeetaFace6,总之就是 666 吧~
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《JavaCV的摄像头实战》系列的第十二篇,咱们来开发一个实用功能:识别性别并显示在预览页面,如下图: 今天的代码,主要功能如下图所示: 如果您看过《JavaCV的摄像头实战》系列的其他文章,就会发现上图中只有蓝色部分是新增内容,其余的步骤都是固定套路,《JavaCV的摄像头实战》系列的每一个应用玩的都是相同套路:别看步骤挺
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《JavaCV的摄像头实战》系列的第十三篇,前文《JavaCV的摄像头实战之十二:性别检测》中,借助训练好的卷积神经网络模型开发出了识别性别的应用,今天在前文基础上做少量改动,实现年龄识别的功能,效果如下图: 应用主要功能如下图所示: 如果您看过《JavaCV的摄像头实战》系列的其他文章,就会发现上图中只有蓝色部分是新增内容,其
计算机视觉在识别不同的面部表情方面越来越好,但对于那些在训练数据集中没有充分表现的特定群体,比如种族少数民族或具有雌雄同体特征的女性,算法仍然表现不佳。 谷歌研究人员在arXiv 发表的一篇新论文,通
AiTechYun 编辑:xiaoshan 新的研究详细介绍了男性和女性微笑之间的差异 这项研究让AI可以根据他们的微笑来预测一个人的性别 AI是第一个基于视频图像做出预测的“人” 英国布拉德福德大学
前言 年关将至,诸事缠身,今晚难得闲暇,可以静下心来继续我们的人工智能验证之旅。 就让我们先从性别识别开始吧。 困惑 雄兔脚扑朔, 雌兔眼迷离; 双兔傍地走, 安能辨我是雄雌? 这是《木兰辞》中的结尾,大家都耳熟能详。其实,如何判断一个人是男人还是女儿,我们人类自己恐怕都没有搞清楚。男如武英女似文华,男儿刚强女儿柔美,这些都是寻常说法,如山铮铁骨不是男儿专利,似水绕指柔也并非女人独有,我们每个人其实都有两面性和双重性格。人工智能如何去判断性别,它依靠什么样的特征和气质,有没有明确的判断规则,是基于人脸的物理
编辑导语 近日,腾讯云正式上线智能语音服务。智能语音是由腾讯微信AI团队自主研发的语音处理技术,可以满足语音识别、语音合成、声纹识别等需求。 这是继微信支付提速、微信公众号CDN加速、微信公众号安全护航等一系列动作之后,腾讯云联合微信发布的又一重大举措。腾讯云智能语音服务将以强大的垂直领域定制化服务,打造专业高效的语音大脑。 一、识别率行业领先云端+嵌入式开放 语音作为继键盘、鼠标、触屏之后人机交互的新体验,其识别技术被广泛应用在呼叫中心、网络搜索、智能终端、移动应用、人工智能等各大领域。 腾讯云平台联合微
人可以轻易理解所看到的视觉信息,但将同样的能力赋予计算机,并让其代替人类来进行类脑思考,是人工智能学术界、产业界争相研究的科学课题。人脸作为最重要的生物特征,蕴含了大量的属性信息,如性别、种族、年龄、表情、颜值等,而如何对这些属性信息进行预测,则是人脸分析领域的研究热点之一。
【导读】近期,浙江大学学生Boyuan Jiang使用TensorFlow实现了一个人脸年龄和性别识别的工具,首先使用dlib来检测和对齐图片中的人脸,然后使用CNN深度网络来估计年龄和性别。代码已经
上一篇《使用ML.NET模型生成器来完成图片性别识别》发布后,很多朋友希望得到源码,这里附上地址:
现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别;从智能手机的人脸识别的性别识别;如今无人驾驶汽车更是应用了大量的机器识别的是算法在里边。
这两天大家的朋友圈、微博有没有被18岁的照片刷屏,那18到底是什么梗呢? 其实18岁的梗是因为2017年12月31日,最后一批90后(生于1999年12月31日)度过了他们18岁的生日。 这意味着:9
项目地址:https://github.com/opencv/open_model_zoo
Python 3,并使用第三方库 Requests、lxml、AipFace,代码共 100 + 行
【新智元导读】在新智元与中信证券合办的人工智能产业研讨会上,微软亚洲研究院常务副院长芮勇发表《从人工智能到增强智能》的演讲。芮勇博士讲了“三个AI”:聚合的AI,经过训练的多达152层的深度学习神经网络,在图像识别上的错误率降到3.57%,比很聪明的斯坦福博士更低;自适应的AI,通过四种人工智能技术顺利实现不同语言间的实时翻译;隐形的AI,Hololens将把人类带入全息计算的未来。最后,芮勇说,今后不是人VS机器,而是人与机器双方优势互补,通往“增强智能”。 芮勇现任微软亚洲研究院常务副院长。他还是国际
K3s是完全符合生产要求的Kubernetes发行版, 安装简单,可用于生产,整个二进制文件小于100M,作为单一文件打包部署,优势在于,你只需几秒钟就可以得到一个完全成熟的Kubernetes集群。
你是否遇到过这种情况?——外出与小孩散步,TA发现一朵很漂亮的花,跑过来问你是什么,但是你突然愣住了—因为你并不知道它是什么花。 目前世界上至少存在250000种花,即便是经验丰富的植物学者也很难全部认识它们。如果现在告诉你以后不用尴尬对小孩承认你并不知道它是什么花,不久之后你就能在无论什么时候都能马上认出任何一种花卉或者任何植物的品种,会不会很期待? 鉴于目前图像识别的强大能力以及使用智能手机随手拍照的便利,普通人通过使用工具也能轻松的识别各种花卉。这个工具叫做智能花卉识别系统(Smart Flower
声明:文中所有文字、图片以及相关外链中直接或间接、明示或暗示涉及性别、颜值分数等信息全部由相关人脸检测接口给出。无任何客观性,仅供参考。 1 数据源 知乎 话题『美女』下所有问题中回答所出现的图片 2 抓取工具 Python 3,并使用第三方库 Requests、lxml、AipFace,代码共 100 + 行 3 必要环境 Mac / Linux / Windows (Linux 没测过,理论上可以。Windows 之前较多反应出现异常,后查是 windows 对本地文件名中的字符做了限制,已使用正则
3)使人们对模型有更好的理解-我们可以查看过滤器的权重并可视化网络“学习”的内容。
整体思路:输入一张图片,selective search方法提取2000个proposal region,由于CNN输入图片的大小是固定的,所以需要把proposal region变成同样的大小(比如227×227),然后通过五层卷积层和两个全连接层,然后用SVM进行分类
导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商场安保方面,人脸识别被广泛应用于监控系统,有助于识别和跟踪潜在的犯罪嫌疑人或失踪人员,提升了安全防范的能力。另外,手机解锁也是人脸识别技术的重要应用之一,它为用户提供了一种快捷、便利的身份验证方式,替代了传统的密码或指纹识别。
本文仅为模型应用实战,而非颜值研究,所得结果仅供娱乐,仅供参考。 方法也仅供参考。 一般而言,数据量越大,结果越接近正常人审美。由于本次数据量较小,故仅为实验。 使用环境:ubuntu14.04,opencv3.2.0,dlib19.6,python2.7 一、准备工作: 1、下载dlib库,下载特征提取模型。 该模型的作用是通过卷积神经网络产生128维的特征向量,用以代表这张脸。网络输入参数为人脸landmark的68个特征点shape和整幅图像。可猜想网络特征与人脸的68特征点坐标有关,在网络中进行归一
作者:汪铖杰 首发于 腾讯云技术社区 量子位 已获授权编辑发布 优图实验室研究人脸技术多年,不仅在技术方面有很好的积累,而且在公司内外的业务中有众多应用。笔者作为优图实验室人脸研究组的一员,在与产品、商务、工程开发同事交流过程中发现:不管是“从图中找到人脸的位置”,或是“识别出这个人脸对应的身份”,亦或是其他,大家都会把这些不同的人脸技术统称为“人脸识别技术”。 因此,笔者整理了一些常见人脸技术的基本概念,主要用于帮助非基础研究同事对人脸相关技术有一个更深入的了解,方便后续的交流与合作。 人脸技术基本概念介
部分来源于《机器人大讲堂》和《2017年中国人脸识别未来发展路径、市场需求、市场发展空间预测》 近年来由于深度学习爆炸式的发展,已经带动了整个行业的发展。身为人工智能的一份子,为该技术骄傲自豪。在丰
上一期“计算机视觉战队”已经和大家分享了相关的人脸检测、识别和验证背景及现状的发展状况,今天我们继续说说人脸领域的一些相关技术以及新框架的人脸检测识别系统。
1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输
人脸技术基本概念介绍 1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相
首先祝大家七夕情人节愉快,能和喜欢的人度过浪漫的一天,也祝在科研的同学抽出时间陪伴你的伴侣,一起度过一年一次的中国情人节,若还处于单身的同学,希望你们不仅科研成功、还能遇到自己喜欢的他(她)!
为了使本文的标题既准确又吸睛, 我们决定征求一下ChatGPT的意见。结果发现ChatGPT已经堪称自媒体标题党高手。最后的标题参考了ChatGPT的建议(如下所示)。
有没有发现AI居然能够基本呈现相应原人物的皱纹和肤色,再加上上面鸣人AI的头像也“歪打正着”的黄头发。
自然语言处理(NLP)的正式定义:是一个使用计算机科学、人工智能(AI)和形式语言学概念来分析自然语言的研究领域。不太正式的定义表明:它是一组工具,用于从自然语言源(如web页面和文本文档)获取有意义和有用的信息。 NLP工具的实现一般是基于机器学习与深度学习、其它算法(Lucene Core);基于前两者的实现是比较流行且持续在探索演进。
过去十年,中国是监控摄像头增长最快的国家,截至去年底,全国在公共区域共安装了 1.76 亿个摄像头,而且调查预计在三年内中国安装摄像头的数量会增加到 6.26 亿个。
这个EfficientNet的核心思想是寻找标准化的模型缩放方法,一般来说,模型深度、宽度、分辨率越大,那么模型的效果就会有提高。以前的网络一般在某一个维度上进行尝试,而EfficientNet因为团队有钱(google的),愣是在三个维度上找到了一个平衡。EfficientNet在图像竞赛中也是直接拿来用,用的也多,所以之后有空把之前写的《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》论文笔记整理整理发出来。总之这里回答的关键在于这个公式:
原文地址:http://blog.csdn.net/hjimce/article/details/50187029
答:否则,我们将获得一个由多个线性函数组成的线性函数,那么就成了线性模型。线性模型的参数数量非常少,因此建模的复杂性也会非常有限。
这一次我将从人脸检测,关键点检测,人脸识别,人脸表情,人脸年龄,人脸姿态等几个方向整理出人脸领域有用的数据集清单,不全也有9成全吧。
【新智元导读】华为在人工智能相关领域的发展路径选择,也许将改变中国 AI+ 时代的产业格局和江湖面貌。新智元特别邀请到华为 CBG 软件工程部 VP、终端智慧工程部部长张宝峰参加了 6 月的百人会,详
领取专属 10元无门槛券
手把手带您无忧上云